Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Stefanopoulou, Anna G.
Documents disponibles écrits par cet auteur
Affiner la rechercheControl-Oriented Modeling and Analysis for Automotive Fuel Cell Systems / Pukrushpan, Jay T. in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 126 N° 1 (Mars 2004)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 126 N° 1 (Mars 2004) . - 14-25 p.
Titre : Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems Titre original : Modélisation et Analyse d'une Commande-Orientée pour les Systèmes des Véhicules à Moteur de Cellules de Carburant Type de document : texte imprimé Auteurs : Pukrushpan, Jay T., Auteur ; Huei Peng, Auteur ; Stefanopoulou, Anna G. Article en page(s) : 14-25 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Cellule de carburant Modèle de commande Dynamique d'écoulement Compresseur Inertie Turbulence Index. décimale : 629.8 Résumé : Fuel Cells are electrochemical devices that convert the chemical energy of a gaseous fuel directly into electricity. They are widely regarded as a potential future stationary and mobile power source. The response of a fuel cell system depends on the air and hydrogen feed, flow and pressure regulation, and heat and water management. In this paper, we develop a dynamic model suitable for the control study of fuel cell systems. The transient phenomena captured in the model include the flow and inertia dynamics of the compressor, the manifold filling dynamics (both anode and cathode), reactant partial pressures, and membrane humidity. It is important to note, however, that the fuel cell stack temperature is treated as a parameter rather than a state variable of this model because of its long time constant. Limitations and several possible applications of this model are presented.
Les cellules de carburant sont des dispositifs électrochimiques qui convertissent l'énergie chimique d'un combustible gazeux directement en électricité. Elles sont largement considérées comme une future source d'énergie stationnaire et mobile potentielle. La réponse d'un système de cellules de carburant dépend de l'alimentation d'air et d'hydrogène, du règlement d'écoulement et de pression, et de la gestion de la chaleur et de l'eau. En cet article, nous développons un approprié modèle dynamique à l'étude de commande des systèmes de cellules de carburant. Les phénomènes passagers capturés dans le modèle incluent la dynamique d'écoulement et d'inertie du compresseur, la dynamique remplissante de tubulure (anode et cathode), des pressions partielles de réactif, et l'humidité de membrane. Il est important de noter, cependant, que la température de pile de cellules de carburant est traitée comme paramètre plutôt que variable d'état de ce modèle en raison de sa longue constante de temps. Des limitations et plusieurs applications possibles de ce modèle sont présentées.En ligne : pukrushp@umich.edu [article] Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems = Modélisation et Analyse d'une Commande-Orientée pour les Systèmes des Véhicules à Moteur de Cellules de Carburant [texte imprimé] / Pukrushpan, Jay T., Auteur ; Huei Peng, Auteur ; Stefanopoulou, Anna G. . - 14-25 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 126 N° 1 (Mars 2004) . - 14-25 p.
Mots-clés : Cellule de carburant Modèle de commande Dynamique d'écoulement Compresseur Inertie Turbulence Index. décimale : 629.8 Résumé : Fuel Cells are electrochemical devices that convert the chemical energy of a gaseous fuel directly into electricity. They are widely regarded as a potential future stationary and mobile power source. The response of a fuel cell system depends on the air and hydrogen feed, flow and pressure regulation, and heat and water management. In this paper, we develop a dynamic model suitable for the control study of fuel cell systems. The transient phenomena captured in the model include the flow and inertia dynamics of the compressor, the manifold filling dynamics (both anode and cathode), reactant partial pressures, and membrane humidity. It is important to note, however, that the fuel cell stack temperature is treated as a parameter rather than a state variable of this model because of its long time constant. Limitations and several possible applications of this model are presented.
Les cellules de carburant sont des dispositifs électrochimiques qui convertissent l'énergie chimique d'un combustible gazeux directement en électricité. Elles sont largement considérées comme une future source d'énergie stationnaire et mobile potentielle. La réponse d'un système de cellules de carburant dépend de l'alimentation d'air et d'hydrogène, du règlement d'écoulement et de pression, et de la gestion de la chaleur et de l'eau. En cet article, nous développons un approprié modèle dynamique à l'étude de commande des systèmes de cellules de carburant. Les phénomènes passagers capturés dans le modèle incluent la dynamique d'écoulement et d'inertie du compresseur, la dynamique remplissante de tubulure (anode et cathode), des pressions partielles de réactif, et l'humidité de membrane. Il est important de noter, cependant, que la température de pile de cellules de carburant est traitée comme paramètre plutôt que variable d'état de ce modèle en raison de sa longue constante de temps. Des limitations et plusieurs applications possibles de ce modèle sont présentées.En ligne : pukrushp@umich.edu Puddle dynamics and air-to-fuel ratio compensation for gasoline-ethanol blends in flex-fuel engines / Kyung-ho Ahn in IEEE Transactions on control systems technology, Vol. 18 N° 6 (Novembre 2010)
[article]
in IEEE Transactions on control systems technology > Vol. 18 N° 6 (Novembre 2010) . - pp. 1241-1253
Titre : Puddle dynamics and air-to-fuel ratio compensation for gasoline-ethanol blends in flex-fuel engines Type de document : texte imprimé Auteurs : Kyung-ho Ahn, Auteur ; Stefanopoulou, Anna G., Auteur ; Mrdjan Jankovic, Auteur Année de publication : 2011 Article en page(s) : pp. 1241-1253 Note générale : Génie Aérospatial Langues : Anglais (eng) Mots-clés : Air-to-fuel ratio (AFR) control Evaporation Flex-fluel vehicles (FFVs) Fuel dynamics Gasoline-ethanol blend Multi-component fuel Index. décimale : 629.1 Résumé : Ethanol is being increasingly used as an alternative fuel to petroleum-based gasoline and diesel derivatives. Currently available flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up to 85% ethanol (93% in Brazil) with minimum hardware modifications. This flexibility is partly achieved through the closed-loop air-to-fuel ratio control which maintains automatically operation around the stoichiometric ratio. Precise transient air-to-fuel ratio (AFR) control depends however on a feedforward compensator that reduces the transient effects of fuel puddle dynamics. An accurate and tunable model of the fuel puddle dynamics for gasoline-ethanol blends is, thus, necessary for the purpose of AFR control. In this paper, we propose a physics-based fuel puddle model that may be used for control purposes in flex-fuel vehicles. In particular, the gasoline-ethanol blend is modeled using several chemical compounds and is parameterized by ethanol content. The model consists of a droplet evaporation model and a single-puddle vaporization model. The droplet evaporation model is simulated offline to generate port wall-impacting factors of injected fuel to be used in a single-puddle vaporization model. The single-puddle vaporization model is a cycle-based model that may be simulated online to characterize fuel puddle dynamics in port fuel injected engines. To verify the validity of the model, simulation results are compared with limited experimental data. A transient fuel compensator based on the proposed model is also formulated.
DEWEY : 629.1 ISSN : 1063-6536 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5356229 [article] Puddle dynamics and air-to-fuel ratio compensation for gasoline-ethanol blends in flex-fuel engines [texte imprimé] / Kyung-ho Ahn, Auteur ; Stefanopoulou, Anna G., Auteur ; Mrdjan Jankovic, Auteur . - 2011 . - pp. 1241-1253.
Génie Aérospatial
Langues : Anglais (eng)
in IEEE Transactions on control systems technology > Vol. 18 N° 6 (Novembre 2010) . - pp. 1241-1253
Mots-clés : Air-to-fuel ratio (AFR) control Evaporation Flex-fluel vehicles (FFVs) Fuel dynamics Gasoline-ethanol blend Multi-component fuel Index. décimale : 629.1 Résumé : Ethanol is being increasingly used as an alternative fuel to petroleum-based gasoline and diesel derivatives. Currently available flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up to 85% ethanol (93% in Brazil) with minimum hardware modifications. This flexibility is partly achieved through the closed-loop air-to-fuel ratio control which maintains automatically operation around the stoichiometric ratio. Precise transient air-to-fuel ratio (AFR) control depends however on a feedforward compensator that reduces the transient effects of fuel puddle dynamics. An accurate and tunable model of the fuel puddle dynamics for gasoline-ethanol blends is, thus, necessary for the purpose of AFR control. In this paper, we propose a physics-based fuel puddle model that may be used for control purposes in flex-fuel vehicles. In particular, the gasoline-ethanol blend is modeled using several chemical compounds and is parameterized by ethanol content. The model consists of a droplet evaporation model and a single-puddle vaporization model. The droplet evaporation model is simulated offline to generate port wall-impacting factors of injected fuel to be used in a single-puddle vaporization model. The single-puddle vaporization model is a cycle-based model that may be simulated online to characterize fuel puddle dynamics in port fuel injected engines. To verify the validity of the model, simulation results are compared with limited experimental data. A transient fuel compensator based on the proposed model is also formulated.
DEWEY : 629.1 ISSN : 1063-6536 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5356229 Sensitivity analysis of combustion timing of homogeneous charge compression ignition gasoline engines / Chia-Jui Chiang in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 131 N°1 (Janvier/Février 2009)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N°1 (Janvier/Février 2009) . - 05 p.
Titre : Sensitivity analysis of combustion timing of homogeneous charge compression ignition gasoline engines Type de document : texte imprimé Auteurs : Chia-Jui Chiang, Auteur ; Stefanopoulou, Anna G., Auteur Année de publication : 2009 Article en page(s) : 05 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : temperature; combustion; fuels; engines; cylinders; exhaust systems; sensitivity analysis; gasoline engines; homogeneous charge compression ignition engines Résumé : The goal of this paper is to identify the dominant factors that should be included in a control oriented model in order to predict the start of combustion in a homogeneous charge compression ignition (HCCI) engine. Qualitative and quantitative information on the individual effects of fuel and exhaust gas recirculation on the HCCI combustion is provided. Using sensitivity analysis around a wide range of operating conditions of a single-cylinder port-injection gasoline HCCI engine, we find that temperature is the dominant factor in determining the start of combustion. Charge temperature thus becomes the “spark” in a HCCI engine. Therefore, a model without the composition terms should be adequate for model based regulation of the combustion timing in a port-injection gasoline HCCI engine with high dilution from the exhaust. DEWEY : 629.8 ISSN : 0022-0434 En ligne : dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&issueid=2 [...] [article] Sensitivity analysis of combustion timing of homogeneous charge compression ignition gasoline engines [texte imprimé] / Chia-Jui Chiang, Auteur ; Stefanopoulou, Anna G., Auteur . - 2009 . - 05 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N°1 (Janvier/Février 2009) . - 05 p.
Mots-clés : temperature; combustion; fuels; engines; cylinders; exhaust systems; sensitivity analysis; gasoline engines; homogeneous charge compression ignition engines Résumé : The goal of this paper is to identify the dominant factors that should be included in a control oriented model in order to predict the start of combustion in a homogeneous charge compression ignition (HCCI) engine. Qualitative and quantitative information on the individual effects of fuel and exhaust gas recirculation on the HCCI combustion is provided. Using sensitivity analysis around a wide range of operating conditions of a single-cylinder port-injection gasoline HCCI engine, we find that temperature is the dominant factor in determining the start of combustion. Charge temperature thus becomes the “spark” in a HCCI engine. Therefore, a model without the composition terms should be adequate for model based regulation of the combustion timing in a port-injection gasoline HCCI engine with high dilution from the exhaust. DEWEY : 629.8 ISSN : 0022-0434 En ligne : dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&issueid=2 [...]