Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Maroni, Pascal
Documents disponibles écrits par cet auteur
Affiner la rechercheFonctions eulériennes polynômes orthogonaux classiques / Maroni, Pascal in Techniques de l'ingénieur AFM, Vol. AFM2 (Trimestriel)
[article]
in Techniques de l'ingénieur AFM > Vol. AFM2 (Trimestriel) . - 1-30 p.
Titre : Fonctions eulériennes polynômes orthogonaux classiques Type de document : texte imprimé Auteurs : Maroni, Pascal, Auteur Année de publication : 2007 Article en page(s) : 1-30 p. Note générale : Mathématiques pour l'ingénieur Langues : Français (fre) Mots-clés : Fonctions eulériennes--Polynômes--Orthogonaux--Classiques--Physique mathématique--Asymptotique--fondamentaux Résumé : Les fonctions eulériennes ont une situation particulière : elles apparaissent dans presque toutes les questions touchant les autres fonctions spéciales, c’est‐à‐dire qu’elles interviennent, en particulier la fonction Gamma, dans la plupart des problèmes provenant de la physique mathématique. Il paraît donc nécessaire d’étudier ces fonctions avant toutes les autres.
Historiquement, la fonction gamma est née de l’exigence de donner un sens à x ! pour x complexe quelconque. La formule de Stirling, fournissant une estimation de x ! pour x grand, fondamentale dans les questions de comportement asymptotique, achève de donner un statut primordial à la fonction Γ.
L’étude de celle‐ci fait intervenir dès le début les principes fondamentaux de la théorie des fonctions de variable complexe. Il est remarquable de constater que la justification de ses principales propriétés peut être exposée de façon élémentaire, sans cesser d’être rigoureuse.
Longtemps au nombre de trois, les suites de polynômes orthogonaux classiques, comme les trois mousquetaires, sont en fait au nombre de quatre depuis 1949 : les polynômes d’Hermite, les polynômes de Laguerre (à un paramètre), les polynômes de Bessel (à un paramètre) et les polynômes de Jacobi (à deux paramètres). Les polynômes de Bessel ont tardé à obtenir le statut de polynômes classiques parce que la forme de Bessel n’est pas définie positive pour aucune valeur du paramètre.
Algébriquement, une suite orthogonale est qualifiée de classique si la suite des dérivées est aussi orthogonale. Avec cette définition, les polynômes de Bessel sont classiques. D’autres définitions sont possibles ; les plus importantes sont exposées ici.
À l’étude basée sur le caractère hypergéométrique des polynômes classiques, on a préféré une exposition purement algébrique qui a le mérite de relier les différentes caractérisations de manière naturelle. Avec ce point de vue, les questions de représentation des formes sont rejetées au second plan.Note de contenu : Bibliogr. REFERENCE : A 154 ISSN : 1776-0860 Date : Novembre 1994 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] [article] Fonctions eulériennes polynômes orthogonaux classiques [texte imprimé] / Maroni, Pascal, Auteur . - 2007 . - 1-30 p.
Mathématiques pour l'ingénieur
Langues : Français (fre)
in Techniques de l'ingénieur AFM > Vol. AFM2 (Trimestriel) . - 1-30 p.
Mots-clés : Fonctions eulériennes--Polynômes--Orthogonaux--Classiques--Physique mathématique--Asymptotique--fondamentaux Résumé : Les fonctions eulériennes ont une situation particulière : elles apparaissent dans presque toutes les questions touchant les autres fonctions spéciales, c’est‐à‐dire qu’elles interviennent, en particulier la fonction Gamma, dans la plupart des problèmes provenant de la physique mathématique. Il paraît donc nécessaire d’étudier ces fonctions avant toutes les autres.
Historiquement, la fonction gamma est née de l’exigence de donner un sens à x ! pour x complexe quelconque. La formule de Stirling, fournissant une estimation de x ! pour x grand, fondamentale dans les questions de comportement asymptotique, achève de donner un statut primordial à la fonction Γ.
L’étude de celle‐ci fait intervenir dès le début les principes fondamentaux de la théorie des fonctions de variable complexe. Il est remarquable de constater que la justification de ses principales propriétés peut être exposée de façon élémentaire, sans cesser d’être rigoureuse.
Longtemps au nombre de trois, les suites de polynômes orthogonaux classiques, comme les trois mousquetaires, sont en fait au nombre de quatre depuis 1949 : les polynômes d’Hermite, les polynômes de Laguerre (à un paramètre), les polynômes de Bessel (à un paramètre) et les polynômes de Jacobi (à deux paramètres). Les polynômes de Bessel ont tardé à obtenir le statut de polynômes classiques parce que la forme de Bessel n’est pas définie positive pour aucune valeur du paramètre.
Algébriquement, une suite orthogonale est qualifiée de classique si la suite des dérivées est aussi orthogonale. Avec cette définition, les polynômes de Bessel sont classiques. D’autres définitions sont possibles ; les plus importantes sont exposées ici.
À l’étude basée sur le caractère hypergéométrique des polynômes classiques, on a préféré une exposition purement algébrique qui a le mérite de relier les différentes caractérisations de manière naturelle. Avec ce point de vue, les questions de représentation des formes sont rejetées au second plan.Note de contenu : Bibliogr. REFERENCE : A 154 ISSN : 1776-0860 Date : Novembre 1994 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] Fonctions hypergéométriques / Maroni, Pascal in Techniques de l'ingénieur AFM, Vol. AFM2 (Trimestriel)
[article]
in Techniques de l'ingénieur AFM > Vol. AFM2 (Trimestriel) . - 1-22 p.
Titre : Fonctions hypergéométriques : fonctions de bessel Type de document : texte imprimé Auteurs : Maroni, Pascal, Auteur Année de publication : 2007 Article en page(s) : 1-22 p. Note générale : Mathématiques pour l'ingénieur Langues : Français (fre) Mots-clés : Fonctions hypergéométriques--Fonctions Bessel--Processus--Géométrique--Analytiques Résumé : Après les fonctions eulériennes qui interviennent de façon universelle, ce sont sans aucun doute les fonctions hypergéométriques – la fonction de Gauss et les fonctions confluentes – qui fournissent les exemples les plus simples de la mise en œuvre des processus fondamentaux de l’analyse. En effet, la fonction de Gauss, définie par une série entière, apparaît comme une généralisation naturelle de la série géométrique et relève ainsi des méthodes de la théorie des fonctions analytiques. On peut en dire autant des fonctions confluentes, en particulier de la fonction de Kummer qui généralise, elle, la fonction exponentielle.
Bien qu’elles soient étudiées à part, les fonctions de Bessel constituent un cas particulier notable des fonctions hypergéométriques confluentes dans la mesure où l’on pourrait décrire toutes leurs propriétés à partir de ces dernières.
Toutes ces fonctions ont en commun le fait d’être respectivement solutions d’une équation différentielle linéaire du second ordre à coefficients polynomiaux : l’équation de Gauss, l’équation de Kummer et l’équation de Bessel. Ce fait est à l’origine de toutes les propriétés importantes des fonctions envisagées. Il est aussi responsable de l’extraordinaire développement de la littérature au sujet des fonctions hypergéométriques, surtout à l’égard des fonctions de Bessel, car c’est par l’intermédiaire de l’équation différentielle que celles-ci apparaissent dans de nombreux problèmes de la physique mathématique (électrodynamique, théorie des vibrations, théorie de la chaleur), lorsque l’on pratique, pour résoudre l’équation en cause, la méthode dite de séparation des variables.
Dans ce qui suit, nous nous plaçons délibérément sur un terrain élémentaire, en essayant toutefois d’être rigoureux. Sans prétendre à l’exhaustivité – et de loin –, la matière traitée permet une première compréhension des problèmes et donne la possibilité d’aborder, plus aguerris, les ouvrages spécialisés indiqués à la fin de cet article.Note de contenu : Bibliogr.AF 160 REFERENCE : A 160 ISSN : 1776-0860 Date : Avril 1997 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] [article] Fonctions hypergéométriques : fonctions de bessel [texte imprimé] / Maroni, Pascal, Auteur . - 2007 . - 1-22 p.
Mathématiques pour l'ingénieur
Langues : Français (fre)
in Techniques de l'ingénieur AFM > Vol. AFM2 (Trimestriel) . - 1-22 p.
Mots-clés : Fonctions hypergéométriques--Fonctions Bessel--Processus--Géométrique--Analytiques Résumé : Après les fonctions eulériennes qui interviennent de façon universelle, ce sont sans aucun doute les fonctions hypergéométriques – la fonction de Gauss et les fonctions confluentes – qui fournissent les exemples les plus simples de la mise en œuvre des processus fondamentaux de l’analyse. En effet, la fonction de Gauss, définie par une série entière, apparaît comme une généralisation naturelle de la série géométrique et relève ainsi des méthodes de la théorie des fonctions analytiques. On peut en dire autant des fonctions confluentes, en particulier de la fonction de Kummer qui généralise, elle, la fonction exponentielle.
Bien qu’elles soient étudiées à part, les fonctions de Bessel constituent un cas particulier notable des fonctions hypergéométriques confluentes dans la mesure où l’on pourrait décrire toutes leurs propriétés à partir de ces dernières.
Toutes ces fonctions ont en commun le fait d’être respectivement solutions d’une équation différentielle linéaire du second ordre à coefficients polynomiaux : l’équation de Gauss, l’équation de Kummer et l’équation de Bessel. Ce fait est à l’origine de toutes les propriétés importantes des fonctions envisagées. Il est aussi responsable de l’extraordinaire développement de la littérature au sujet des fonctions hypergéométriques, surtout à l’égard des fonctions de Bessel, car c’est par l’intermédiaire de l’équation différentielle que celles-ci apparaissent dans de nombreux problèmes de la physique mathématique (électrodynamique, théorie des vibrations, théorie de la chaleur), lorsque l’on pratique, pour résoudre l’équation en cause, la méthode dite de séparation des variables.
Dans ce qui suit, nous nous plaçons délibérément sur un terrain élémentaire, en essayant toutefois d’être rigoureux. Sans prétendre à l’exhaustivité – et de loin –, la matière traitée permet une première compréhension des problèmes et donne la possibilité d’aborder, plus aguerris, les ouvrages spécialisés indiqués à la fin de cet article.Note de contenu : Bibliogr.AF 160 REFERENCE : A 160 ISSN : 1776-0860 Date : Avril 1997 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...]