Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Spiteri, Pierre
Documents disponibles écrits par cet auteur
Affiner la rechercheAlgorithmes numériques pour la résolution des grandes systèmes / Spiteri, Pierre in Techniques de l'ingénieur AFM, Vol. AFM3 (Trimestriel)
[article]
in Techniques de l'ingénieur AFM > Vol. AFM3 (Trimestriel) . - 1-10 p.
Titre : Algorithmes numériques pour la résolution des grandes systèmes Type de document : texte imprimé Auteurs : Spiteri, Pierre, Auteur Année de publication : 2007 Article en page(s) : 1-10 p. Note générale : Mathématiques pour l'ingénieur Langues : Français (fre) Mots-clés : Algorithmes numériquesRésolution Grands systèmes Résumé : On a vu dans l’article Méthode des différences finies pour les EDP stationnairesMéthode des différences finies pour les EDP stationnaires que la discrétisation d’équations aux dérivées partielles stationnaires conduisait à la résolution de systèmes linéaires de grande dimension dont la matrice est creuse. De même, la discrétisation d’équations aux dérivées partielles d’évolution par des schémas implicites (article Méthode des différences finies pour les EDP d’évolutionMéthode des différences finies pour les EDP d’évolution) conduit également à la résolution de systèmes linéaires ayant les mêmes caractéristiques. Compte tenu de cette spécificité, l’inversion des matrices issues de la discrétisation d’équations aux dérivées partielles devient de plus en plus préoccupante dans le domaine de la simulation numérique et est, par conséquent, très délicate, compte tenu, en particulier, du mauvais conditionnement de ces matrices. Cet aspect dépend fortement des applications traitées et il est hors de question de donner une réponse universelle à ce problème. C’est pourquoi, dans cet article, nous allons passer en revue différentes méthodes de résolution de tels systèmes, pour essayer de dégager les algorithmes les plus performants.
Dans le cas de la résolution numérique d’une équation aux dérivées partielles non linéaire, on doit résoudre un système algébrique non linéaire ; la résolution d’un tel système s’effectuera par une méthode itérative de type méthode de Newton BARANGER (J.) - Analyse numérique., ce qui nécessitera, à chaque itération, une linéarisation de l’application considérée autour du point courant et la résolution d’un système linéaire ; l’étude de la convergence de ce type de méthode est loin d’être triviale et les résultats théoriques garantissant la convergence de la méthode sont établis uniquement dans des situations particulières. Si l’équation aux dérivées partielles est linéaire, on aura à résoudre un système linéaire ce qui, en théorie, paraît plus simple ; cependant il subsiste des difficultés d’ordre numérique pour déterminer la solution approchée. Dans cet exposé, nous nous limiterons au cas linéaireNote de contenu : Bibliogr. REFERENCE : AF 502 ISSN : 1776-0860 Date : Octobre 2002 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] [article] Algorithmes numériques pour la résolution des grandes systèmes [texte imprimé] / Spiteri, Pierre, Auteur . - 2007 . - 1-10 p.
Mathématiques pour l'ingénieur
Langues : Français (fre)
in Techniques de l'ingénieur AFM > Vol. AFM3 (Trimestriel) . - 1-10 p.
Mots-clés : Algorithmes numériquesRésolution Grands systèmes Résumé : On a vu dans l’article Méthode des différences finies pour les EDP stationnairesMéthode des différences finies pour les EDP stationnaires que la discrétisation d’équations aux dérivées partielles stationnaires conduisait à la résolution de systèmes linéaires de grande dimension dont la matrice est creuse. De même, la discrétisation d’équations aux dérivées partielles d’évolution par des schémas implicites (article Méthode des différences finies pour les EDP d’évolutionMéthode des différences finies pour les EDP d’évolution) conduit également à la résolution de systèmes linéaires ayant les mêmes caractéristiques. Compte tenu de cette spécificité, l’inversion des matrices issues de la discrétisation d’équations aux dérivées partielles devient de plus en plus préoccupante dans le domaine de la simulation numérique et est, par conséquent, très délicate, compte tenu, en particulier, du mauvais conditionnement de ces matrices. Cet aspect dépend fortement des applications traitées et il est hors de question de donner une réponse universelle à ce problème. C’est pourquoi, dans cet article, nous allons passer en revue différentes méthodes de résolution de tels systèmes, pour essayer de dégager les algorithmes les plus performants.
Dans le cas de la résolution numérique d’une équation aux dérivées partielles non linéaire, on doit résoudre un système algébrique non linéaire ; la résolution d’un tel système s’effectuera par une méthode itérative de type méthode de Newton BARANGER (J.) - Analyse numérique., ce qui nécessitera, à chaque itération, une linéarisation de l’application considérée autour du point courant et la résolution d’un système linéaire ; l’étude de la convergence de ce type de méthode est loin d’être triviale et les résultats théoriques garantissant la convergence de la méthode sont établis uniquement dans des situations particulières. Si l’équation aux dérivées partielles est linéaire, on aura à résoudre un système linéaire ce qui, en théorie, paraît plus simple ; cependant il subsiste des difficultés d’ordre numérique pour déterminer la solution approchée. Dans cet exposé, nous nous limiterons au cas linéaireNote de contenu : Bibliogr. REFERENCE : AF 502 ISSN : 1776-0860 Date : Octobre 2002 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] Approche variationnelle pour la méthode des eléments finis / Spiteri, Pierre in Techniques de l'ingénieur AFM, Vol. AFM3 (Trimestriel)
[article]
in Techniques de l'ingénieur AFM > Vol. AFM3 (Trimestriel) . - 1-13 p.
Titre : Approche variationnelle pour la méthode des eléments finis Type de document : texte imprimé Auteurs : Spiteri, Pierre, Auteur Année de publication : 2007 Article en page(s) : 1-13 p. Note générale : Mathématiques pour l'ingénieur Langues : Français (fre) Mots-clés : Méthode Éléments finisSimulation numériqueMétéorologie Résumé : Depuis l’avènement des ordinateurs il y a maintenant plus d’un demi-siècle et, compte tenu en particulier de l’augmentation de leur puissance de calcul, la simulation numérique a remplacé l’expérimentation directe trop coûteuse et longue à mettre en œuvre ; celle-ci n’est plus, de nos jours, qu’un moyen de vérification des calculs effectués sur machine. Sur le plan mathématique, la simulation numérique nécessite essentiellement la résolution numérique d’équations aux dérivées partielles qui conduisent à l’obtention de solutions approchées. Il existe de nombreuses méthodes d’approximation qui présentent toutes des avantages et des inconvénients ; citons, à titre illustratif, la méthode des différences finies, la méthode des volumes finis, les méthodes spectrales, etc.
Dans les trois articles qui composent cet ensemble, nous nous intéressons à la méthode des éléments finis qui est très utilisée dans l’industrie, en particulier en aéronautique, dans l’industrie automobile, en météorologie, etc. Cette méthode est intéressante, compte tenu de sa souplesse d’utilisation, en particulier vis-à-vis de l’approximation des divers opérateurs modélisant des phénomènes en physique-mathématique et également pour la prise en compte de conditions aux limites portant sur les gradients de la fonction à calculer. Cette souplesse apparaît également dans le fait que les domaines où sont définies les équations aux dérivées partielles peuvent être approchés au mieux et, en particulier, il peut être tenu compte du caractère courbe des frontières de ces domaines ; de plus, les nœuds de la discrétisation, c’est-à-dire les points où sont approchées les fonctions à calculer, peuvent être répartis de façon arbitraire, ce qui permet d’avoir un maillage serré dans les zones à forte variation de la solution et un maillage relativement grossier dans les régions où cette solution varie peu ; dans le même ordre d’idée, il n’est pas nécessaire d’utiliser des maillages uniformes à pas constant, la définition d’éléments de dimension variable s’effectuant sans difficulté ; cela est particulièrement appréciable lors de l’étude des phénomènes définis dans des milieux hétérogènes. Enfin, sur le plan informatique, la méthode des éléments finis conduit à l’écriture de code de calculs les plus généraux possible, ce qui correspond certes à un avantage mais aussi à un inconvénient, compte tenu de la difficulté pratique de programmation de cet algorithme ; il convient de noter cependant que le schéma de principe du code est relativement simple, la complexité découlant des innombrables possibilités qu’offre la méthode. De plus, le développement d’un tel code nécessite de longs mois de programmation.
Une autre difficulté de compréhension de la méthode des éléments finis réside dans le formalisme mathématique préalable et sous-jacent à la mise en œuvre algorithmique. En effet, compte tenu de la complexité croissante des modèles mathématiques permettant la compréhension de phénomènes de plus en plus compliqués à expliquer, il a été nécessaire de s’appuyer sur des résultats d’analyse fonctionnelle élaborés [1] pour formuler cette méthode d’approximation. Paradoxalement, ce cadre conceptuel abstrait permet de ne pas imposer aux solutions éventuelles d’être indéfiniment dérivables mais au contraire de rechercher la dérivabilité minimale que l’on doit imposer afin que les écritures mathématiques aient un sens. Cela permet d’obtenir une formulation du problème qui peut s’interpréter sur le plan physique soit comme la solution d’un problème de minimisation d’énergie, à condition toutefois que certaines propriétés de symétrie soient vérifiées (ce qui n’est pas toujours le cas), soit grâce à une analogie avec le classique théorème des travaux virtuels. Ce second point de vue a été préféré à l’aspect minimisation du fait de sa plus grande facilité d’exposition et de sa plus grande généralité. Cette partie théorique sera abordée de manière progressive, les aspects conceptuels étant essentiellement exposés en dimension un mais de telle sorte que la généralisation à la dimension deux ou trois s’effectue de manière naturelle.Note de contenu : Bibliogr. REFERENCE : AF 503 ISSN : 1776-0860 Date : Juillet 2002 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] [article] Approche variationnelle pour la méthode des eléments finis [texte imprimé] / Spiteri, Pierre, Auteur . - 2007 . - 1-13 p.
Mathématiques pour l'ingénieur
Langues : Français (fre)
in Techniques de l'ingénieur AFM > Vol. AFM3 (Trimestriel) . - 1-13 p.
Mots-clés : Méthode Éléments finisSimulation numériqueMétéorologie Résumé : Depuis l’avènement des ordinateurs il y a maintenant plus d’un demi-siècle et, compte tenu en particulier de l’augmentation de leur puissance de calcul, la simulation numérique a remplacé l’expérimentation directe trop coûteuse et longue à mettre en œuvre ; celle-ci n’est plus, de nos jours, qu’un moyen de vérification des calculs effectués sur machine. Sur le plan mathématique, la simulation numérique nécessite essentiellement la résolution numérique d’équations aux dérivées partielles qui conduisent à l’obtention de solutions approchées. Il existe de nombreuses méthodes d’approximation qui présentent toutes des avantages et des inconvénients ; citons, à titre illustratif, la méthode des différences finies, la méthode des volumes finis, les méthodes spectrales, etc.
Dans les trois articles qui composent cet ensemble, nous nous intéressons à la méthode des éléments finis qui est très utilisée dans l’industrie, en particulier en aéronautique, dans l’industrie automobile, en météorologie, etc. Cette méthode est intéressante, compte tenu de sa souplesse d’utilisation, en particulier vis-à-vis de l’approximation des divers opérateurs modélisant des phénomènes en physique-mathématique et également pour la prise en compte de conditions aux limites portant sur les gradients de la fonction à calculer. Cette souplesse apparaît également dans le fait que les domaines où sont définies les équations aux dérivées partielles peuvent être approchés au mieux et, en particulier, il peut être tenu compte du caractère courbe des frontières de ces domaines ; de plus, les nœuds de la discrétisation, c’est-à-dire les points où sont approchées les fonctions à calculer, peuvent être répartis de façon arbitraire, ce qui permet d’avoir un maillage serré dans les zones à forte variation de la solution et un maillage relativement grossier dans les régions où cette solution varie peu ; dans le même ordre d’idée, il n’est pas nécessaire d’utiliser des maillages uniformes à pas constant, la définition d’éléments de dimension variable s’effectuant sans difficulté ; cela est particulièrement appréciable lors de l’étude des phénomènes définis dans des milieux hétérogènes. Enfin, sur le plan informatique, la méthode des éléments finis conduit à l’écriture de code de calculs les plus généraux possible, ce qui correspond certes à un avantage mais aussi à un inconvénient, compte tenu de la difficulté pratique de programmation de cet algorithme ; il convient de noter cependant que le schéma de principe du code est relativement simple, la complexité découlant des innombrables possibilités qu’offre la méthode. De plus, le développement d’un tel code nécessite de longs mois de programmation.
Une autre difficulté de compréhension de la méthode des éléments finis réside dans le formalisme mathématique préalable et sous-jacent à la mise en œuvre algorithmique. En effet, compte tenu de la complexité croissante des modèles mathématiques permettant la compréhension de phénomènes de plus en plus compliqués à expliquer, il a été nécessaire de s’appuyer sur des résultats d’analyse fonctionnelle élaborés [1] pour formuler cette méthode d’approximation. Paradoxalement, ce cadre conceptuel abstrait permet de ne pas imposer aux solutions éventuelles d’être indéfiniment dérivables mais au contraire de rechercher la dérivabilité minimale que l’on doit imposer afin que les écritures mathématiques aient un sens. Cela permet d’obtenir une formulation du problème qui peut s’interpréter sur le plan physique soit comme la solution d’un problème de minimisation d’énergie, à condition toutefois que certaines propriétés de symétrie soient vérifiées (ce qui n’est pas toujours le cas), soit grâce à une analogie avec le classique théorème des travaux virtuels. Ce second point de vue a été préféré à l’aspect minimisation du fait de sa plus grande facilité d’exposition et de sa plus grande généralité. Cette partie théorique sera abordée de manière progressive, les aspects conceptuels étant essentiellement exposés en dimension un mais de telle sorte que la généralisation à la dimension deux ou trois s’effectue de manière naturelle.Note de contenu : Bibliogr. REFERENCE : AF 503 ISSN : 1776-0860 Date : Juillet 2002 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] Introduction à la méthode des eléments finis / Spiteri, Pierre in Techniques de l'ingénieur AFM, Vol. AFM3 (Trimestriel)
[article]
in Techniques de l'ingénieur AFM > Vol. AFM3 (Trimestriel) . - 1-12 p.
Titre : Introduction à la méthode des eléments finis Type de document : texte imprimé Auteurs : Spiteri, Pierre, Auteur Année de publication : 2007 Article en page(s) : 1-12 p. Note générale : Mathématiques pour l'ingénieur Langues : Français (fre) Mots-clés : Méthode eléments finisEquationMéthode de Ritz Résumé : On a vu dans l’article [AF 503] qu’une équation aux dérivées partielles ellip-tique pouvait être exprimée sous diverses formulations équivalentes, en ce sens que toute solution d’une formulation est solution d’une autre formulation et réciproquement. La formulation forte du problème présente un intérêt dans la mesure où l’utilisation de la méthode des différences finies est envisagée pour effectuer une approximation du problème. La formulation équivalente du problème basée sur la formulation d’un problème d’optimisation associé à la fonctionnelle , avec définie par :
nécessite que la forme bilinéaire soit symétrique, ce qui en soit est restrictif dans la mesure où certains phénomènes sont modélisés à partir d’opérateurs non autoadjoints. Cependant, lorsque a(.,.) est symétrique, cette formulation du problème conduit à la méthode de Ritz ; numériquement, l’idée est de chercher à minimiser J(.) non plus sur l’ensemble E tout entier, mais sur un sous-espace de E construit à partir de fonctions facilement calculables ; la fonction inconnue qui réalise le minimum est représentée comme combinaison linéaire de fonction de forme (ou de tout autre famille physiquement admissible) et les coefficients de cette combinaison linéaire sont les inconnues du problème. J(.) est alors transformée en une fonctionnelle quadratique et déterminer le minimum de cette nouvelle fonctionnelle revient alors à annuler les dérivées partielles de celle-ci par rapport à ces inconnues, ce qui conduit classiquement à la résolution d’un système linéaire. Nous ne développerons pas cette méthode.Note de contenu : Bibliogr. REFERENCE : AF 504 ISSN : 1776-0860 Date : Juillet 2002 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] [article] Introduction à la méthode des eléments finis [texte imprimé] / Spiteri, Pierre, Auteur . - 2007 . - 1-12 p.
Mathématiques pour l'ingénieur
Langues : Français (fre)
in Techniques de l'ingénieur AFM > Vol. AFM3 (Trimestriel) . - 1-12 p.
Mots-clés : Méthode eléments finisEquationMéthode de Ritz Résumé : On a vu dans l’article [AF 503] qu’une équation aux dérivées partielles ellip-tique pouvait être exprimée sous diverses formulations équivalentes, en ce sens que toute solution d’une formulation est solution d’une autre formulation et réciproquement. La formulation forte du problème présente un intérêt dans la mesure où l’utilisation de la méthode des différences finies est envisagée pour effectuer une approximation du problème. La formulation équivalente du problème basée sur la formulation d’un problème d’optimisation associé à la fonctionnelle , avec définie par :
nécessite que la forme bilinéaire soit symétrique, ce qui en soit est restrictif dans la mesure où certains phénomènes sont modélisés à partir d’opérateurs non autoadjoints. Cependant, lorsque a(.,.) est symétrique, cette formulation du problème conduit à la méthode de Ritz ; numériquement, l’idée est de chercher à minimiser J(.) non plus sur l’ensemble E tout entier, mais sur un sous-espace de E construit à partir de fonctions facilement calculables ; la fonction inconnue qui réalise le minimum est représentée comme combinaison linéaire de fonction de forme (ou de tout autre famille physiquement admissible) et les coefficients de cette combinaison linéaire sont les inconnues du problème. J(.) est alors transformée en une fonctionnelle quadratique et déterminer le minimum de cette nouvelle fonctionnelle revient alors à annuler les dérivées partielles de celle-ci par rapport à ces inconnues, ce qui conduit classiquement à la résolution d’un système linéaire. Nous ne développerons pas cette méthode.Note de contenu : Bibliogr. REFERENCE : AF 504 ISSN : 1776-0860 Date : Juillet 2002 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] Méthode des Différences Finies pour les EDP d'Evolution / Spiteri, Pierre in Techniques de l'ingénieur AFM, Vol. AFM3 (Trimestriel)
[article]
in Techniques de l'ingénieur AFM > Vol. AFM3 (Trimestriel) . - 11 p.
Titre : Méthode des Différences Finies pour les EDP d'Evolution Type de document : texte imprimé Auteurs : Spiteri, Pierre, Auteur Année de publication : 2007 Article en page(s) : 11 p. Note générale : Mathématiques pour l'ingénieur Langues : Français (fre) Mots-clés : Différences finies Evolution REFERENCE : AF 501 Date : Octobre 2002 En ligne : http://www.techniques-ingenieur.fr [article] Méthode des Différences Finies pour les EDP d'Evolution [texte imprimé] / Spiteri, Pierre, Auteur . - 2007 . - 11 p.
Mathématiques pour l'ingénieur
Langues : Français (fre)
in Techniques de l'ingénieur AFM > Vol. AFM3 (Trimestriel) . - 11 p.
Mots-clés : Différences finies Evolution REFERENCE : AF 501 Date : Octobre 2002 En ligne : http://www.techniques-ingenieur.fr Méthode des différences finies pour les EDP stationnaires / Spiteri, Pierre in Techniques de l'ingénieur AFM, Vol. AFM3 (Trimestriel)
[article]
in Techniques de l'ingénieur AFM > Vol. AFM3 (Trimestriel) . - 1-16 p.
Titre : Méthode des différences finies pour les EDP stationnaires Type de document : texte imprimé Auteurs : Spiteri, Pierre, Auteur Année de publication : 2007 Article en page(s) : 1-16 p. Note générale : Mathématiques pour l'Ingénieur Langues : Français (fre) Mots-clés : Méthode Différences--FiniesEquations Résumé : L’observation d’un phénomène conduit toujours le scientifique à une modélisation qui s’accompagne elle‐même d’une mise en équation du problème étudié ; très souvent, les modèles obtenus sont constitués par des équations différentielles ou des équations aux dérivées partielles (EDP) ; malheureusement, les méthodes analytiques de résolution de ce type de problèmes mathématiques ne s’appliquent qu’à une classe très limitée d’équations. À l’aide d’hypothèses simplificatrices, plus ou moins justifiées suivant la valeur des paramètres intervenant dans le modèle, le scientifique se ramène à un type de problèmes qu’il sait résoudre, de manière formelle ; ainsi utilise‐t‐il des modèles très simplifiés pour représenter les phénomènes observés qui sont souvent complexes.
La plupart du temps, les solutions des équations simplifiées ne représentent le phénomène que dans le domaine où les hypothèses simplificatrices ont un sens ; par contre, lorsque les valeurs des paramètres ne rentrent pas dans ce cadre, la solution obtenue n’a pas toujours un grand rapport avec l’observation. Pour avoir une approche plus fine du phénomène étudié, il faut donc prendre en compte dans les équations les termes qui rendent impossible la résolution analytique du problème. On se trouve donc dans une impasse et il faut trouver un compromis permettant à la fois de représenter les observations le plus exactement possible et de résoudre les équations décrivant le régime de fonctionnement du phénomène.
Cependant, avant d’envisager la résolution du problème d’équations aux dérivées partielles, il convient d’effectuer une étude analytique des équations intervenant dans le modèle ; à ce stade, le scientifique doit se poser des questions sur l’existence, l’unicité de la(des) solution(s), la sensibilité de la(des) solution(s) aux perturbations, la croissance ou la décroissance des solutions en fonction du temps, l’existence de points de bifurcation, etc., ce qui conduit à la résolution de problèmes mathématiques extrêmement complexes, qui cependant sont des éléments de validation de modèles mathématiques élaborés par le scientifique.Note de contenu : Bibliogr. REFERENCE : AF 500 ISSN : 1776-0860 Date : Octobre 2002 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] [article] Méthode des différences finies pour les EDP stationnaires [texte imprimé] / Spiteri, Pierre, Auteur . - 2007 . - 1-16 p.
Mathématiques pour l'Ingénieur
Langues : Français (fre)
in Techniques de l'ingénieur AFM > Vol. AFM3 (Trimestriel) . - 1-16 p.
Mots-clés : Méthode Différences--FiniesEquations Résumé : L’observation d’un phénomène conduit toujours le scientifique à une modélisation qui s’accompagne elle‐même d’une mise en équation du problème étudié ; très souvent, les modèles obtenus sont constitués par des équations différentielles ou des équations aux dérivées partielles (EDP) ; malheureusement, les méthodes analytiques de résolution de ce type de problèmes mathématiques ne s’appliquent qu’à une classe très limitée d’équations. À l’aide d’hypothèses simplificatrices, plus ou moins justifiées suivant la valeur des paramètres intervenant dans le modèle, le scientifique se ramène à un type de problèmes qu’il sait résoudre, de manière formelle ; ainsi utilise‐t‐il des modèles très simplifiés pour représenter les phénomènes observés qui sont souvent complexes.
La plupart du temps, les solutions des équations simplifiées ne représentent le phénomène que dans le domaine où les hypothèses simplificatrices ont un sens ; par contre, lorsque les valeurs des paramètres ne rentrent pas dans ce cadre, la solution obtenue n’a pas toujours un grand rapport avec l’observation. Pour avoir une approche plus fine du phénomène étudié, il faut donc prendre en compte dans les équations les termes qui rendent impossible la résolution analytique du problème. On se trouve donc dans une impasse et il faut trouver un compromis permettant à la fois de représenter les observations le plus exactement possible et de résoudre les équations décrivant le régime de fonctionnement du phénomène.
Cependant, avant d’envisager la résolution du problème d’équations aux dérivées partielles, il convient d’effectuer une étude analytique des équations intervenant dans le modèle ; à ce stade, le scientifique doit se poser des questions sur l’existence, l’unicité de la(des) solution(s), la sensibilité de la(des) solution(s) aux perturbations, la croissance ou la décroissance des solutions en fonction du temps, l’existence de points de bifurcation, etc., ce qui conduit à la résolution de problèmes mathématiques extrêmement complexes, qui cependant sont des éléments de validation de modèles mathématiques élaborés par le scientifique.Note de contenu : Bibliogr. REFERENCE : AF 500 ISSN : 1776-0860 Date : Octobre 2002 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] Présentation générale de la méthode des eléments finis / Spiteri, Pierre in Techniques de l'ingénieur AFM, Vol. AFM3 (Trimestriel)
Permalink