Titre : |
Machine learning techniques for turbo decoding in wireless communication systems |
Type de document : |
document électronique |
Auteurs : |
Mehdi Benkirat, Auteur ; Mehdi Chames Eddinne Layes, Auteur ; Taghi, Mohamed Oussaid, Directeur de thèse |
Editeur : |
[S.l.] : [s.n.] |
Année de publication : |
2024 |
Importance : |
1 fichier PDF (19 Mo) |
Présentation : |
ill. |
Note générale : |
Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2024
Bibliogr. p. 151 - 155 . - Annexe p. 156 - 160 |
Langues : |
Anglais (eng) |
Mots-clés : |
Turbo codes
Turbo decoding
SNR
Machine learning
Attention models
Transformer
SOVA
Bit
Error Rate (BER) |
Index. décimale : |
PN01124 |
Résumé : |
This study investigates machine-learning techniques aimed at enhancing turbo decoding in wireless communication. Traditional turbo decoders often struggle with challenges such as susceptibility to burst noise and high error rates at high Signal-to-Noise Ratios (SNRs). To tackle these issues, the study explores Sequence-to-Sequence attention models and Transformer architectures, adapting them for turbo decoding to potentially enhance accuracy and robustness across various channel noise conditions. The research includes foundational discussions on convolutional and turbo codes, simulations using the SOVA algorithm, reviews of neural networks in turbo decoding applications, and introduces the effective models TurboAttention and TurboTransformer. These models demonstrate promising results in terms of Bit Error Rate (BER) across a wide range of SNR values, with encouraging performance observed in hardware inference tests. |
Machine learning techniques for turbo decoding in wireless communication systems [document électronique] / Mehdi Benkirat, Auteur ; Mehdi Chames Eddinne Layes, Auteur ; Taghi, Mohamed Oussaid, Directeur de thèse . - [S.l.] : [s.n.], 2024 . - 1 fichier PDF (19 Mo) : ill. Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Electronique : Alger, École Nationale Polytechnique : 2024
Bibliogr. p. 151 - 155 . - Annexe p. 156 - 160 Langues : Anglais ( eng)
Mots-clés : |
Turbo codes
Turbo decoding
SNR
Machine learning
Attention models
Transformer
SOVA
Bit
Error Rate (BER) |
Index. décimale : |
PN01124 |
Résumé : |
This study investigates machine-learning techniques aimed at enhancing turbo decoding in wireless communication. Traditional turbo decoders often struggle with challenges such as susceptibility to burst noise and high error rates at high Signal-to-Noise Ratios (SNRs). To tackle these issues, the study explores Sequence-to-Sequence attention models and Transformer architectures, adapting them for turbo decoding to potentially enhance accuracy and robustness across various channel noise conditions. The research includes foundational discussions on convolutional and turbo codes, simulations using the SOVA algorithm, reviews of neural networks in turbo decoding applications, and introduces the effective models TurboAttention and TurboTransformer. These models demonstrate promising results in terms of Bit Error Rate (BER) across a wide range of SNR values, with encouraging performance observed in hardware inference tests. |
|