Titre : |
Interpretable recommender systems : a hybrid architecture with logical and collaborative filtering layers |
Type de document : |
document électronique |
Auteurs : |
Nadhir Mazari Boufares, Auteur ; Samia Beldjoudi, Directeur de thèse |
Editeur : |
[S.l.] : [s.n.] |
Année de publication : |
2024 |
Importance : |
1 fichier PDF (10 Mo) |
Présentation : |
ill. |
Note générale : |
Mode d'accès : accès au texte intégral par intranet
Mémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificielle : Alger, Ecole Nationale Polytechnique : 2024
Bibliogr. p. 70 - 72 |
Langues : |
Anglais (eng) |
Mots-clés : |
Recommendation system
Reasoning
Interpretability |
Index. décimale : |
PI02524 |
Résumé : |
Recommender systems (RSs) are rapidly evolving with increasing personalization to meet new constraints and improve performance on digital platforms. However, a significant issue remains: the lack of transparency in their decision-making, particularly with black-box approaches. Integrating logical reasoning and symbolic methods offers a promising solution for enhancing interpretability, but these methods are often underutilized. This thesis proposes a novel RS model that enhances interpretability for end users. Our architecture integrates a logical layer for generating rules from user and item attributes, alongside a graph convolutional network for collaborative filtering. By combining these components, our model generates recommendation scores with improved transparency and interpretability. |
Interpretable recommender systems : a hybrid architecture with logical and collaborative filtering layers [document électronique] / Nadhir Mazari Boufares, Auteur ; Samia Beldjoudi, Directeur de thèse . - [S.l.] : [s.n.], 2024 . - 1 fichier PDF (10 Mo) : ill. Mode d'accès : accès au texte intégral par intranet
Mémoire de Projet de Fin d’Etudes : Génie Industriel. Data Science-Intelligence Artificielle : Alger, Ecole Nationale Polytechnique : 2024
Bibliogr. p. 70 - 72 Langues : Anglais ( eng)
Mots-clés : |
Recommendation system
Reasoning
Interpretability |
Index. décimale : |
PI02524 |
Résumé : |
Recommender systems (RSs) are rapidly evolving with increasing personalization to meet new constraints and improve performance on digital platforms. However, a significant issue remains: the lack of transparency in their decision-making, particularly with black-box approaches. Integrating logical reasoning and symbolic methods offers a promising solution for enhancing interpretability, but these methods are often underutilized. This thesis proposes a novel RS model that enhances interpretability for end users. Our architecture integrates a logical layer for generating rules from user and item attributes, alongside a graph convolutional network for collaborative filtering. By combining these components, our model generates recommendation scores with improved transparency and interpretability. |
|