Détail de l'auteur
Auteur Jaubert, Jean-Noël |
Documents disponibles écrits par cet auteur (8)



Addition of the hydrogen sulfide group to the PPR78 model (Predictive 1978, Peng–Robinson equation of state with temperature dependent kij calculated through a group contribution method) / Romain Privat ; Mutelet Fabrice ; Jaubert, Jean-Noël in Industrial & engineering chemistry research, Vol. 47 n°24 (Décembre 2008)
![]()
[article]
Titre : Addition of the hydrogen sulfide group to the PPR78 model (Predictive 1978, Peng–Robinson equation of state with temperature dependent kij calculated through a group contribution method) Type de document : texte imprimé Auteurs : Romain Privat, Auteur ; Mutelet Fabrice, Auteur ; Jaubert, Jean-Noël, Auteur Année de publication : 2009 Article en page(s) : p. 10041–10052 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Hydrogen Sulfide PPR Résumé : In 2004, we started to develop the PPR78 model which is a group contribution method aimed at estimating the temperature dependent binary interaction parameters (kij(T)) for the widely used Peng–Robinson equation of state. In our previous papers, 13 groups were defined: CH3, CH2, CH, C, CH4 (methane), C2H6 (ethane), CHaro, Caro, Cfused_aromatic_rings, CH2,cyclic, CHcyclic or Ccyclic, CO2, and N2. It was thus possible to estimate the kij for any mixture containing alkanes, aromatics, naphthenes, carbon dioxide, and nitrogen whatever the temperature. In this study, the PPR78 model is extended to systems containing hydrogen sulfide. To do so, the group H2S was added. From a general overview on the results obtained from the whole constituted experimental data bank, one can see that the PPR78 model is able to quite accurately predict the behavior of the systems containing H2S. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800799z
in Industrial & engineering chemistry research > Vol. 47 n°24 (Décembre 2008) . - p. 10041–10052[article] Addition of the hydrogen sulfide group to the PPR78 model (Predictive 1978, Peng–Robinson equation of state with temperature dependent kij calculated through a group contribution method) [texte imprimé] / Romain Privat, Auteur ; Mutelet Fabrice, Auteur ; Jaubert, Jean-Noël, Auteur . - 2009 . - p. 10041–10052.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 n°24 (Décembre 2008) . - p. 10041–10052
Mots-clés : Hydrogen Sulfide PPR Résumé : In 2004, we started to develop the PPR78 model which is a group contribution method aimed at estimating the temperature dependent binary interaction parameters (kij(T)) for the widely used Peng–Robinson equation of state. In our previous papers, 13 groups were defined: CH3, CH2, CH, C, CH4 (methane), C2H6 (ethane), CHaro, Caro, Cfused_aromatic_rings, CH2,cyclic, CHcyclic or Ccyclic, CO2, and N2. It was thus possible to estimate the kij for any mixture containing alkanes, aromatics, naphthenes, carbon dioxide, and nitrogen whatever the temperature. In this study, the PPR78 model is extended to systems containing hydrogen sulfide. To do so, the group H2S was added. From a general overview on the results obtained from the whole constituted experimental data bank, one can see that the PPR78 model is able to quite accurately predict the behavior of the systems containing H2S. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800799z Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire
in Techniques de l'ingénieur : constantes physico-chimiques Ti510. Caractérisations thermodynamiques / Philippe Baranek (2012)![]()
Titre : Capacités thermiques des composés organiques : réf. internet K 550 Type de document : texte imprimé Auteurs : Schuffenecker, Louis, Auteur ; Jaubert, Jean-Noël, Auteur Année de publication : 1994 Importance : p. 83-91 Note générale : Bibliogr. p. 93 Langues : Français (fre) Mots-clés : Chimie Thermodynamique Composés organiques -- Capacités thermiques Note de contenu : Sommaire :
1. Définition des capacités thermiques
2. Capacités thermiques des gaz parfaits purs
3. Capacités thermiques des fluides réels
4. Table des capacités thermiques des composés organiques considérés comme gaz parfaitsCapacités thermiques des composés organiques : réf. internet K 550 [texte imprimé] / Schuffenecker, Louis, Auteur ; Jaubert, Jean-Noël, Auteur . - 1994 . - p. 83-91.
in Techniques de l'ingénieur : constantes physico-chimiques Ti510. Caractérisations thermodynamiques / Philippe Baranek (2012)![]()
Bibliogr. p. 93
Langues : Français (fre)
Mots-clés : Chimie Thermodynamique Composés organiques -- Capacités thermiques Note de contenu : Sommaire :
1. Définition des capacités thermiques
2. Capacités thermiques des gaz parfaits purs
3. Capacités thermiques des fluides réels
4. Table des capacités thermiques des composés organiques considérés comme gaz parfaitsExemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Ethanol-hydrocarbon blend vapor prediction / Romain Privat in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 9 (Septembre 2010)
![]()
[article]
Titre : Ethanol-hydrocarbon blend vapor prediction Type de document : texte imprimé Auteurs : Romain Privat, Auteur ; Jaubert, Jean-Noël, Auteur ; Freddy Garcia, Auteur Année de publication : 2011 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combustion Gas turbine power stations Ignition Safety systems Vaporisation Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In the volatile fuel price environment of today, the quest for alternative fuels has become a heavy and long term trend in power generation worldwide. Incorporating alternative fuels in gas turbine installations raises multiple engineering questions relating to combustion, emissions, on-base and auxiliary hardware capability, safety, etc. In 2008, GE carried out a field test aimed at characterizing the combustion of ethanol in a naphtha fuelled gas turbine plant. The testing strategy has been to locally prepare and burn ethanol-naphtha blends with a fraction of ethanol increasing from 0% to nearly 100%. During the engineering phase prior to this field test, it appeared necessary to develop a sufficient knowledge on the behavior of ethanol-hydrocarbon blends in order to establish the safety analysis and address in particular the risks of (i) potential uncontrolled ignition event in the air blanket of fuel tanks and (ii) flash vaporization of potential fuel pond in a confined environment. Although some results exist in the car engine literature for ethanol-gasoline blends, it was necessary to take into account the specificities of gas turbine applications, namely, (i) the much greater potential ethanol concentration range (from 0% to 100%) and (ii) the vast composition spectrum of naphtha likely to generate a much larger Reid vapor pressure envelope as compared with automotive applications. In order to fulfill the safety needs of this field test, the “Laboratoire de Thermodynamique des Milieux Polyphasés” of Nancy, France has developed a thermodynamic model to approach the vaporization equilibria of ethanol-hydrocarbons mixtures with variable ethanol strength and naphtha composition. This model, named PPR78, is based on the 1978 Peng–Robinson equation of state and allows the estimation of the thermodynamic properties of a multicomponent mixture made of ethanol and naphtha compounds by using the group contribution concept. The saturation equilibrium partial pressure of such fluids in the various situations of relevance for the safety analysis can thus be calculated. The paper reports the elaboration of this model and illustrates the results obtained when using it in different safety configurations. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 08 p.[article] Ethanol-hydrocarbon blend vapor prediction [texte imprimé] / Romain Privat, Auteur ; Jaubert, Jean-Noël, Auteur ; Freddy Garcia, Auteur . - 2011 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 08 p.
Mots-clés : Combustion Gas turbine power stations Ignition Safety systems Vaporisation Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In the volatile fuel price environment of today, the quest for alternative fuels has become a heavy and long term trend in power generation worldwide. Incorporating alternative fuels in gas turbine installations raises multiple engineering questions relating to combustion, emissions, on-base and auxiliary hardware capability, safety, etc. In 2008, GE carried out a field test aimed at characterizing the combustion of ethanol in a naphtha fuelled gas turbine plant. The testing strategy has been to locally prepare and burn ethanol-naphtha blends with a fraction of ethanol increasing from 0% to nearly 100%. During the engineering phase prior to this field test, it appeared necessary to develop a sufficient knowledge on the behavior of ethanol-hydrocarbon blends in order to establish the safety analysis and address in particular the risks of (i) potential uncontrolled ignition event in the air blanket of fuel tanks and (ii) flash vaporization of potential fuel pond in a confined environment. Although some results exist in the car engine literature for ethanol-gasoline blends, it was necessary to take into account the specificities of gas turbine applications, namely, (i) the much greater potential ethanol concentration range (from 0% to 100%) and (ii) the vast composition spectrum of naphtha likely to generate a much larger Reid vapor pressure envelope as compared with automotive applications. In order to fulfill the safety needs of this field test, the “Laboratoire de Thermodynamique des Milieux Polyphasés” of Nancy, France has developed a thermodynamic model to approach the vaporization equilibria of ethanol-hydrocarbons mixtures with variable ethanol strength and naphtha composition. This model, named PPR78, is based on the 1978 Peng–Robinson equation of state and allows the estimation of the thermodynamic properties of a multicomponent mixture made of ethanol and naphtha compounds by using the group contribution concept. The saturation equilibrium partial pressure of such fluids in the various situations of relevance for the safety analysis can thus be calculated. The paper reports the elaboration of this model and illustrates the results obtained when using it in different safety configurations. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Formalisme et Principes de la Thermodynamique / Schuffenecker, Louis in Techniques de l'lngénieur. AFP. Sciences fondamentales, Vol. AFP3 (/)
![]()
[article]
Titre : Formalisme et Principes de la Thermodynamique Type de document : texte imprimé Auteurs : Schuffenecker, Louis, Auteur ; Jaubert, Jean-Noël, Auteur ; Solmimando, Roland Année de publication : 2007 Article en page(s) : 1-24 p. Note générale : Physique-Chimie Langues : Français (fre) Mots-clés : Thermodynamique Index. décimale : 62 Ingénierie. Art de l'ingénieur. Technologie en général REFERENCE : AF 4 040 DEWEY : 620 Date : Janvier 1999 RAMEAU : Thermodynamique En ligne : http://www.technique-ingenieur.fr
in Techniques de l'lngénieur. AFP. Sciences fondamentales > Vol. AFP3 (/) . - 1-24 p.[article] Formalisme et Principes de la Thermodynamique [texte imprimé] / Schuffenecker, Louis, Auteur ; Jaubert, Jean-Noël, Auteur ; Solmimando, Roland . - 2007 . - 1-24 p.
Physique-Chimie
Langues : Français (fre)
in Techniques de l'lngénieur. AFP. Sciences fondamentales > Vol. AFP3 (/) . - 1-24 p.
Mots-clés : Thermodynamique Index. décimale : 62 Ingénierie. Art de l'ingénieur. Technologie en général REFERENCE : AF 4 040 DEWEY : 620 Date : Janvier 1999 RAMEAU : Thermodynamique En ligne : http://www.technique-ingenieur.fr Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Prediction of partition coefficients of organic compounds in Ionic liquids / Anne-Laure Revelli in Industrial & engineering chemistry research, Vol. 49 N° 8 (Avril 2010)
![]()
[article]
Titre : Prediction of partition coefficients of organic compounds in Ionic liquids : use of a linear solvation energy relationship with parameters calculated through a group contribution method Type de document : texte imprimé Auteurs : Anne-Laure Revelli, Auteur ; Fabrice Mutelet, Auteur ; Jaubert, Jean-Noël, Auteur Année de publication : 2010 Article en page(s) : pp. 3883–3892 Note générale : Industrial Chemistry Langues : Anglais (eng) Mots-clés : PredictionOrganic Compounds CoLiquids Energy Relationship Résumé : A group contribution method is proposed to determine linear solvation energy relationship parameters (GC-LSER) in view of estimating the gas-to-ionic liquid partition coefficients and water-to-ionic liquid partition coefficients. Large sets of partition coefficients were analyzed using the Abraham solvation model to determine the contributions of 21 groups: 12 groups characterizing the cations and 9 groups for the anions. The derived equations correlate the experimental gas-to-ionic liquid and water-to-ionic liquid partition coefficient data to within 0.15 and 0.17 log units, respectively. The 21 group-parameters can be used to predict the partition coefficients of solutes in alkyl or functionalized ionic liquids with a good accuracy. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901776z
in Industrial & engineering chemistry research > Vol. 49 N° 8 (Avril 2010) . - pp. 3883–3892[article] Prediction of partition coefficients of organic compounds in Ionic liquids : use of a linear solvation energy relationship with parameters calculated through a group contribution method [texte imprimé] / Anne-Laure Revelli, Auteur ; Fabrice Mutelet, Auteur ; Jaubert, Jean-Noël, Auteur . - 2010 . - pp. 3883–3892.
Industrial Chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 8 (Avril 2010) . - pp. 3883–3892
Mots-clés : PredictionOrganic Compounds CoLiquids Energy Relationship Résumé : A group contribution method is proposed to determine linear solvation energy relationship parameters (GC-LSER) in view of estimating the gas-to-ionic liquid partition coefficients and water-to-ionic liquid partition coefficients. Large sets of partition coefficients were analyzed using the Abraham solvation model to determine the contributions of 21 groups: 12 groups characterizing the cations and 9 groups for the anions. The derived equations correlate the experimental gas-to-ionic liquid and water-to-ionic liquid partition coefficient data to within 0.15 and 0.17 log units, respectively. The 21 group-parameters can be used to predict the partition coefficients of solutes in alkyl or functionalized ionic liquids with a good accuracy. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901776z Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire PermalinkPropriétés Thermodynamiques du Corps Pur / Solmimando, Roland in Techniques de l'lngénieur. AFP. Sciences fondamentales, Vol. AFP3 (/)
![]()
PermalinkUse of the PPR78 model to predict new equilibrium data of binary systems involving hydrocarbons and nitrogen / Romain Privat in Industrial & engineering chemistry research, Vol. 47 N°19 (Octobre 2008)
![]()
Permalink