Titre : |
Comparative study of control strategies applied to the five-phase induction machine |
Type de document : |
document électronique |
Auteurs : |
Abdelfattah Hoggui, Auteur ; Mohand Oulhadj Mahmoudi, Directeur de thèse ; Ali Benachour, Directeur de thèse |
Editeur : |
[S.l.] : [s.n.] |
Année de publication : |
2025 |
Importance : |
1 fichier PDF (20.3 Mo) |
Présentation : |
ill. |
Note générale : |
Mode d'accès : accès au texte intégral par intranet.
Thèse de Doctorat : Électrotechnique : Alger, Ecole Nationale Polytechnique : 2025
Bibliogr. p. 148 - 156 . - Annexe p. 157 - 161 |
Langues : |
Anglais (eng) |
Mots-clés : |
Multiphase systems
Five-phase induction motor
Two-level five-phase voltage source inverter
Direct torque control
Space vector modulation
Predictive control
Artificial neural networks
Speed sensorless control
Model reference adaptive system |
Index. décimale : |
D000825 |
Résumé : |
This thesis focuses on the study and implementation of advanced control techniques for five-phase induction motors, which are increasingly valued for their enhanced reliability, superior performance, and fault-tolerant capabilities compared to conventional three-phase systems. The research explores and compares three prominent control strategies: Direct Torque Control (DTC), Direct Torque Control with Space Vector Modulation (DTC-SVM), and Finite Control Set Model Predictive Control (FCS-MPC). Additionally, the thesis introduces two significant advancements: the integration of artificial neural networks (ANNs) to enhance control performance and the implementation of a Model Reference Adaptive System (MRAS) for speed sensorless control. The results highlight the strengths and limitations of each technique, providing insights into their suitability for various industrial applications. This work paves the way for further research into hybrid approaches that combine the strengths of these methods and tailor them to handle fault conditions, fully harnessing the advantages offered by five-phase induction motors. |
Comparative study of control strategies applied to the five-phase induction machine [document électronique] / Abdelfattah Hoggui, Auteur ; Mohand Oulhadj Mahmoudi, Directeur de thèse ; Ali Benachour, Directeur de thèse . - [S.l.] : [s.n.], 2025 . - 1 fichier PDF (20.3 Mo) : ill. Mode d'accès : accès au texte intégral par intranet.
Thèse de Doctorat : Électrotechnique : Alger, Ecole Nationale Polytechnique : 2025
Bibliogr. p. 148 - 156 . - Annexe p. 157 - 161 Langues : Anglais ( eng)
Mots-clés : |
Multiphase systems
Five-phase induction motor
Two-level five-phase voltage source inverter
Direct torque control
Space vector modulation
Predictive control
Artificial neural networks
Speed sensorless control
Model reference adaptive system |
Index. décimale : |
D000825 |
Résumé : |
This thesis focuses on the study and implementation of advanced control techniques for five-phase induction motors, which are increasingly valued for their enhanced reliability, superior performance, and fault-tolerant capabilities compared to conventional three-phase systems. The research explores and compares three prominent control strategies: Direct Torque Control (DTC), Direct Torque Control with Space Vector Modulation (DTC-SVM), and Finite Control Set Model Predictive Control (FCS-MPC). Additionally, the thesis introduces two significant advancements: the integration of artificial neural networks (ANNs) to enhance control performance and the implementation of a Model Reference Adaptive System (MRAS) for speed sensorless control. The results highlight the strengths and limitations of each technique, providing insights into their suitability for various industrial applications. This work paves the way for further research into hybrid approaches that combine the strengths of these methods and tailor them to handle fault conditions, fully harnessing the advantages offered by five-phase induction motors. |
|