Détail de l'indexation
Ouvrages de la bibliothèque en indexation PC00625 (2)



Hybrid aI-based sensor optimization for structural health monitoring of multi-story buildings — case study / Mohamed Boukharouba (2025)
Titre : Hybrid aI-based sensor optimization for structural health monitoring of multi-story buildings — case study : HQ tower R+12 Type de document : document électronique Auteurs : Mohamed Boukharouba, Auteur ; Abdelmadjid Tadjadit, Directeur de thèse Editeur : [S.l.] : [s.n.] Année de publication : 2025 Importance : 1 fichier PDF (8.6 Mo) Présentation : ill. Note générale : Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Génie Civil : Alger, École Nationale Polytechnique : 2025
Bibliogr. p. 92-94Langues : Anglais (eng) Mots-clés : Structural health monitoring (SHM)
Sensor placement optimization
Ge-netic algorithm
Distance matrix
Damage-adaptive sensingIndex. décimale : PC00625 Résumé : Structural Health Monitoring (SHM) plays a critical role in ensuring the safety and func-
tionality of vital structures such as bridges, dams, and public buildings. To make SHM sys-
tems more cost-effective, it is essential to optimize the number and placement of sensors,
reducing implementation costs while maintaining reliable damage detection and structural
assessment.
This study addresses the problem of optimizing damage-adaptive sensor layout in struc-
tural health monitoring (SHM) for multi-story buildings. A three-dimensional finite ele-
ment model of a 12-story reinforced concrete tower (R+12) was developed using SAP2000,
enabling the identification of high-risk damage zones based on internal force distributions.
Steady-state vibration responses were generated, and a genetic algorithm was used to iden-
tify the optimal sensor configuration for each damage scenario using distance matrices as
damage-sensitive features. These scenario-based layouts were then merged into a unified
configuration by analyzing sensor occurrence and importance scores. The final sensor
set ensures sufficient coverage and sensitivity to structural degradation while maintaining
a reduced number of sensors. The proposed approach provides a scalable and practical
solution for SHM system design in complex structures with anticipated damage regions.Hybrid aI-based sensor optimization for structural health monitoring of multi-story buildings — case study : HQ tower R+12 [document électronique] / Mohamed Boukharouba, Auteur ; Abdelmadjid Tadjadit, Directeur de thèse . - [S.l.] : [s.n.], 2025 . - 1 fichier PDF (8.6 Mo) : ill.
Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Génie Civil : Alger, École Nationale Polytechnique : 2025
Bibliogr. p. 92-94
Langues : Anglais (eng)
Mots-clés : Structural health monitoring (SHM)
Sensor placement optimization
Ge-netic algorithm
Distance matrix
Damage-adaptive sensingIndex. décimale : PC00625 Résumé : Structural Health Monitoring (SHM) plays a critical role in ensuring the safety and func-
tionality of vital structures such as bridges, dams, and public buildings. To make SHM sys-
tems more cost-effective, it is essential to optimize the number and placement of sensors,
reducing implementation costs while maintaining reliable damage detection and structural
assessment.
This study addresses the problem of optimizing damage-adaptive sensor layout in struc-
tural health monitoring (SHM) for multi-story buildings. A three-dimensional finite ele-
ment model of a 12-story reinforced concrete tower (R+12) was developed using SAP2000,
enabling the identification of high-risk damage zones based on internal force distributions.
Steady-state vibration responses were generated, and a genetic algorithm was used to iden-
tify the optimal sensor configuration for each damage scenario using distance matrices as
damage-sensitive features. These scenario-based layouts were then merged into a unified
configuration by analyzing sensor occurrence and importance scores. The final sensor
set ensures sufficient coverage and sensitivity to structural degradation while maintaining
a reduced number of sensors. The proposed approach provides a scalable and practical
solution for SHM system design in complex structures with anticipated damage regions.Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Spécialité Etat_Exemplaire EP00932 PC00625 Ressources électroniques Bibliothèque centrale Projet Fin d'Etudes Disponible Genie_civil Téléchargeable Modeling and simulation of hydrogen production processes using aspen plus / Ibrahim Elkhalil Ferroudj (2025)
![]()
Titre : Modeling and simulation of hydrogen production processes using aspen plus Type de document : document électronique Auteurs : Ibrahim Elkhalil Ferroudj, Auteur ; Ammar Selatnia, Directeur de thèse Editeur : [S.l.] : [s.n.] Année de publication : 2025 Importance : 1 fichier PDF (2 Mo) Note générale :
Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Génie Chimique : Alger, École Nationale Polytechnique : 2025
Bibliogr. p. 122-131. - Annexes
Mémoire confidentiel 5 ans jusqu'à Juin 2030Langues : Anglais (eng) Mots-clés : Hydrogen production
Syngas
Electrolysis
SOEC
AEC
PEM
Methane Steam
Biomass Gasification
Energy efficiency
Carbon utilizationIndex. décimale : PC00625 Résumé :
This thesis addresses the critical need for sustainable energy by exploring diverse hydrogen and syngas production methods. Confronting renewable energy intermittency and fossil fuel environmental impacts, the study models and comparatively analyzes Solid Oxide (SOEC), Alkaline (AEC), and Proton Exchange Membrane (PEM) Electrolysis, Methane Steam Reforming (MSR), and Biomass Gasification. Using Aspen Plus, detailed thermodynamic and kinetic models were developed and validated. The research assesses energy efficiency, carbon utilization, economic feasibility, and environmental impact. Findings underscore the potential of integrated systems to boost efficiency and cut CO2 emissions, advancing robust and sustainable energy conversion and storage strategies.Modeling and simulation of hydrogen production processes using aspen plus [document électronique] / Ibrahim Elkhalil Ferroudj, Auteur ; Ammar Selatnia, Directeur de thèse . - [S.l.] : [s.n.], 2025 . - 1 fichier PDF (2 Mo).
Mode d'accès : accès au texte intégral par intranet.
Mémoire de Projet de Fin d’Études : Génie Chimique : Alger, École Nationale Polytechnique : 2025
Bibliogr. p. 122-131. - Annexes
Mémoire confidentiel 5 ans jusqu'à Juin 2030
Langues : Anglais (eng)
Mots-clés : Hydrogen production
Syngas
Electrolysis
SOEC
AEC
PEM
Methane Steam
Biomass Gasification
Energy efficiency
Carbon utilizationIndex. décimale : PC00625 Résumé :
This thesis addresses the critical need for sustainable energy by exploring diverse hydrogen and syngas production methods. Confronting renewable energy intermittency and fossil fuel environmental impacts, the study models and comparatively analyzes Solid Oxide (SOEC), Alkaline (AEC), and Proton Exchange Membrane (PEM) Electrolysis, Methane Steam Reforming (MSR), and Biomass Gasification. Using Aspen Plus, detailed thermodynamic and kinetic models were developed and validated. The research assesses energy efficiency, carbon utilization, economic feasibility, and environmental impact. Findings underscore the potential of integrated systems to boost efficiency and cut CO2 emissions, advancing robust and sustainable energy conversion and storage strategies.Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Spécialité Etat_Exemplaire EP00906 PC00625 Ressources électroniques Bibliothèque centrale Projet Fin d'Etudes Disponible Genie_chimique Téléchargeable Documents numériques
![]()
ConfidentielURL