Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Transactions of the ASME . Journal of fluids engineering / White, Frank M. . Vol. 130 N° 10Journal of fluids engineering (Transactions of the ASME)Mention de date : Octobre 2008 Paru le : 29/09/2009 |
Dépouillements
Ajouter le résultat dans votre panierThe effect of Reynolds number on microaxial flow fan performance / David Quin in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 10 p.
Titre : The effect of Reynolds number on microaxial flow fan performance Type de document : texte imprimé Auteurs : David Quin, Auteur ; Ronan Grimes, Auteur Année de publication : 2009 Article en page(s) : 10 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Microscale axial flow; Reynolds number Résumé : Microscale axial flow fans were investigated in response to the growing cooling requirements of the electronics industry. The two main challenges of this investigation were manufacture of a fully functional fan at the microscale, and performance reduction due to Reynolds number effect. Manufacture of a fully functional axial microfan complete with three-dimensional blade geometry was proven possible using microelectrodischarge machining techniques. Experimental performance measurements proved that Reynolds number effect was not prohibitive at the microscale, and dimensional analysis thereof derived a novel linear scaling method, which quickly and accurately predicted the Reynolds number effect at any fan scale. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] The effect of Reynolds number on microaxial flow fan performance [texte imprimé] / David Quin, Auteur ; Ronan Grimes, Auteur . - 2009 . - 10 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 10 p.
Mots-clés : Microscale axial flow; Reynolds number Résumé : Microscale axial flow fans were investigated in response to the growing cooling requirements of the electronics industry. The two main challenges of this investigation were manufacture of a fully functional fan at the microscale, and performance reduction due to Reynolds number effect. Manufacture of a fully functional axial microfan complete with three-dimensional blade geometry was proven possible using microelectrodischarge machining techniques. Experimental performance measurements proved that Reynolds number effect was not prohibitive at the microscale, and dimensional analysis thereof derived a novel linear scaling method, which quickly and accurately predicted the Reynolds number effect at any fan scale. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] Computational towing tank procedures for single run curves of resistance and propulsion / Tao Xing in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 14 p.
Titre : Computational towing tank procedures for single run curves of resistance and propulsion Type de document : texte imprimé Auteurs : Tao Xing, Auteur ; Pablo Carrica, Auteur ; Frederick Stern, Auteur Année de publication : 2009 Article en page(s) : 14 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Computational towing tank; run curve Résumé : A procedure is proposed to perform ship hydrodynamics computations for a wide range of velocities in a single run, herein called the computational towing tank. The method is based on solving the fluid flow equations using an inertial earth-fixed reference frame, and ramping up the ship speed slowly such that the time derivatives become negligible and the local solution corresponds to a quasi steady-state. The procedure is used for the computation of resistance and propulsion curves, in both cases allowing for dynamic calculation of the sinkage and trim. Computational tests are performed for the Athena R/V model DTMB 5365, in both bare hull with skeg and fully appended configurations, including two speed ramps and extensive comparison with experimental data. Comparison is also performed against steady-state points, demonstrating that the quasisteady solutions obtained match well the single-velocity computations. A verification study using seven systematically refined grids was performed for one Froude number, and grid convergence for resistance coefficient, sinkage, and trim were analyzed. The verification study concluded that finer grids are needed to reach the asymptotic range, though validation was achieved for resistance coefficient and sinkage but not for trim. Overall results prove that for medium and high Froude numbers the computational towing tank is an efficient and accurate tool to predict curves of resistance and propulsion for ship flows using a single run. The procedure is not possible or highly difficult using a physical towing tank suggesting a potential of using the computational towing tank to aid the design process. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Computational towing tank procedures for single run curves of resistance and propulsion [texte imprimé] / Tao Xing, Auteur ; Pablo Carrica, Auteur ; Frederick Stern, Auteur . - 2009 . - 14 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 14 p.
Mots-clés : Computational towing tank; run curve Résumé : A procedure is proposed to perform ship hydrodynamics computations for a wide range of velocities in a single run, herein called the computational towing tank. The method is based on solving the fluid flow equations using an inertial earth-fixed reference frame, and ramping up the ship speed slowly such that the time derivatives become negligible and the local solution corresponds to a quasi steady-state. The procedure is used for the computation of resistance and propulsion curves, in both cases allowing for dynamic calculation of the sinkage and trim. Computational tests are performed for the Athena R/V model DTMB 5365, in both bare hull with skeg and fully appended configurations, including two speed ramps and extensive comparison with experimental data. Comparison is also performed against steady-state points, demonstrating that the quasisteady solutions obtained match well the single-velocity computations. A verification study using seven systematically refined grids was performed for one Froude number, and grid convergence for resistance coefficient, sinkage, and trim were analyzed. The verification study concluded that finer grids are needed to reach the asymptotic range, though validation was achieved for resistance coefficient and sinkage but not for trim. Overall results prove that for medium and high Froude numbers the computational towing tank is an efficient and accurate tool to predict curves of resistance and propulsion for ship flows using a single run. The procedure is not possible or highly difficult using a physical towing tank suggesting a potential of using the computational towing tank to aid the design process. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Numerical analysis on the start-up flow past a resonant cavity / Antonio Filippone in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 12 p.
Titre : Numerical analysis on the start-up flow past a resonant cavity Type de document : texte imprimé Auteurs : Antonio Filippone, Auteur Année de publication : 2009 Article en page(s) : 12 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Resonant cavity; Reynolds number; numerical simulation; vortex Résumé : This paper presents the results of a computational analysis on a three-dimensional unsteady flow inside a resonant cavity. The cavity was fully immersed in a channel flow, had a squared cross section, and a spanwise aspect ratio equal to 3. It was partly closed to the inflow by slits upstream and downstream. The lid was 1∕4 of the cavity length. The Reynolds number was Re=8000 based on the freestream velocity. The numerical simulations were carried out for flow times up to 380 units. Results are presented for a symmetric cavity with respect to the normal to the freestream. The analysis shows complex three-dimensional vortex structures, with Taylor–Görtler-type vortices, filament vortices, and other secondary vortices, some having a relatively short life-span. It is shown that the flow is substantially symmetric, with small spanwise instabilities. It is further shown that there is an asymptotic tendency to an unsteady flow with large wavelengths. A primary vortex establishes at the center of the cavity. Most vortex regions disappear and that they depend on the type of geometry and the state of the boundary layer at the inlet. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Numerical analysis on the start-up flow past a resonant cavity [texte imprimé] / Antonio Filippone, Auteur . - 2009 . - 12 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 12 p.
Mots-clés : Resonant cavity; Reynolds number; numerical simulation; vortex Résumé : This paper presents the results of a computational analysis on a three-dimensional unsteady flow inside a resonant cavity. The cavity was fully immersed in a channel flow, had a squared cross section, and a spanwise aspect ratio equal to 3. It was partly closed to the inflow by slits upstream and downstream. The lid was 1∕4 of the cavity length. The Reynolds number was Re=8000 based on the freestream velocity. The numerical simulations were carried out for flow times up to 380 units. Results are presented for a symmetric cavity with respect to the normal to the freestream. The analysis shows complex three-dimensional vortex structures, with Taylor–Görtler-type vortices, filament vortices, and other secondary vortices, some having a relatively short life-span. It is shown that the flow is substantially symmetric, with small spanwise instabilities. It is further shown that there is an asymptotic tendency to an unsteady flow with large wavelengths. A primary vortex establishes at the center of the cavity. Most vortex regions disappear and that they depend on the type of geometry and the state of the boundary layer at the inlet. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Effect of slip on the entropy generation from a single rotating disk / Aytac Arikoglu in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 9 p.
Titre : Effect of slip on the entropy generation from a single rotating disk Type de document : texte imprimé Auteurs : Aytac Arikoglu, Auteur ; Guven Komurgoz, Auteur ; Ibrahim Ozkol, Auteur Année de publication : 2009 Article en page(s) : 9 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Entropy generation; rotating disk Résumé : In this study, it is the first time that the effect of slip on the entropy generation is investigated for the flow over a rotating single free disk. The problem is considered for steady and axially symmetrical case in a Newtonian ambient fluid. The classical approach introduced by Von Karman is followed to reduce nonlinear flow and heat field equations to ordinary differential equations. Then these equations are solved by using differential transform method. Entropy generation equation for this system is then derived and nondimensionalized. This equation, which has never been introduced for such a geometry and boundary conditions before in open literature, is interpreted for various physical cases by using nondimensional parameters of fluid and heat fields. It is observed that the effects of slip are to reduce the magnitude of entropy generation and to reduce the total energy in the system by reducing velocities and velocity gradients. Also, while entropy generation reduces, Bejan number converges to 1 with increasing slip factor. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Effect of slip on the entropy generation from a single rotating disk [texte imprimé] / Aytac Arikoglu, Auteur ; Guven Komurgoz, Auteur ; Ibrahim Ozkol, Auteur . - 2009 . - 9 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 9 p.
Mots-clés : Entropy generation; rotating disk Résumé : In this study, it is the first time that the effect of slip on the entropy generation is investigated for the flow over a rotating single free disk. The problem is considered for steady and axially symmetrical case in a Newtonian ambient fluid. The classical approach introduced by Von Karman is followed to reduce nonlinear flow and heat field equations to ordinary differential equations. Then these equations are solved by using differential transform method. Entropy generation equation for this system is then derived and nondimensionalized. This equation, which has never been introduced for such a geometry and boundary conditions before in open literature, is interpreted for various physical cases by using nondimensional parameters of fluid and heat fields. It is observed that the effects of slip are to reduce the magnitude of entropy generation and to reduce the total energy in the system by reducing velocities and velocity gradients. Also, while entropy generation reduces, Bejan number converges to 1 with increasing slip factor. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Wall-modeled large-Eddy simulations of flows with curvature and mild separation / Senthilkumaran Radhakrishnan in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 9 p.
Titre : Wall-modeled large-Eddy simulations of flows with curvature and mild separation Type de document : texte imprimé Auteurs : Senthilkumaran Radhakrishnan, Auteur ; Piomelli, Ugo, Auteur ; Anthony Keating, Auteur Année de publication : 2009 Article en page(s) : 9 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : wall-modeled large-eddy simulation; Reynolds-averaged Navier–Stokes equation; large-eddy simulation Résumé : The performance of wall-modeled large-eddy simulation (WMLES) based on hybrid models, in which the inner region is modeled by Reynolds-averaged Navier–Stokes (RANS) equation and the outer region is resolved by large-eddy simulation (LES), can make the application of LES attainable at high Reynolds numbers. In previous work by various authors, it was found that in most cases a buffer region exists between the RANS and LES zones, in which the velocity gradient is too high; this leads to an inaccurate prediction of the skin-friction coefficient. Artificially perturbing the RANS∕LES interface has been demonstrated to be effective in removing the buffer region. In this work, WMLES has been performed with stochastic forcing at the interface, following the previous work by our group on two nonequilibrium complex flows. From the two flows studied, we conclude that the application of stochastic forcing results in improvements in the prediction of the skin-friction coefficient in the equilibrium regions of these flows, a better agreement with the experiments of the Reynolds stresses in the adverse pressure gradient and the recovery region, and a good agreement of the mean velocity field with experiments in the separation region. Some limitations of this method, especially in terms of CPU requirements, will be discussed. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Wall-modeled large-Eddy simulations of flows with curvature and mild separation [texte imprimé] / Senthilkumaran Radhakrishnan, Auteur ; Piomelli, Ugo, Auteur ; Anthony Keating, Auteur . - 2009 . - 9 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 9 p.
Mots-clés : wall-modeled large-eddy simulation; Reynolds-averaged Navier–Stokes equation; large-eddy simulation Résumé : The performance of wall-modeled large-eddy simulation (WMLES) based on hybrid models, in which the inner region is modeled by Reynolds-averaged Navier–Stokes (RANS) equation and the outer region is resolved by large-eddy simulation (LES), can make the application of LES attainable at high Reynolds numbers. In previous work by various authors, it was found that in most cases a buffer region exists between the RANS and LES zones, in which the velocity gradient is too high; this leads to an inaccurate prediction of the skin-friction coefficient. Artificially perturbing the RANS∕LES interface has been demonstrated to be effective in removing the buffer region. In this work, WMLES has been performed with stochastic forcing at the interface, following the previous work by our group on two nonequilibrium complex flows. From the two flows studied, we conclude that the application of stochastic forcing results in improvements in the prediction of the skin-friction coefficient in the equilibrium regions of these flows, a better agreement with the experiments of the Reynolds stresses in the adverse pressure gradient and the recovery region, and a good agreement of the mean velocity field with experiments in the separation region. Some limitations of this method, especially in terms of CPU requirements, will be discussed. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Prediction of dynamic stall onset for oscillatory low-speed airfoils / W. Sheng in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 8 p.
Titre : Prediction of dynamic stall onset for oscillatory low-speed airfoils Type de document : texte imprimé Auteurs : W. Sheng, Auteur ; R. A. Galbraith, Auteur ; F. N. Coton, Auteur Année de publication : 2009 Article en page(s) : 8 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : oscillatory airfoils; dynamic stall onset Résumé : This research presents some common features of oscillatory airfoils, and the method for indicating dynamic stall onset for the unsteady process. Under deep stall conditions, the stall-onset angle in oscillation is independent of the mean angle of the oscillatory motion, and by combining the reduced frequency and the amplitude of the oscillatory motion, the equivalent reduced pitch rate is an analog of this motion to the constant reduced pitch rate of the ramp-up motion. By correlating with the measured data, and with the ramp-up results, the equivalent reduced pitch rate can be defined as a representation for the oscillatory motion. Accordingly, the triple-parameter problem of an oscillation (mean angle, reduced frequency, and amplitude) degrades into the single-parameter problem (equivalent reduced pitch rate). Based on these foundations, an extension of the stall-onset criterion is then made for oscillatory airfoils: a method of extracting the stall-onset parameters directly from oscillatory test data, and an indication of stall onset for the oscillatory airfoils. The results from the new proposed method have shown the consistency with the data of Glasgow University and the public data. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Prediction of dynamic stall onset for oscillatory low-speed airfoils [texte imprimé] / W. Sheng, Auteur ; R. A. Galbraith, Auteur ; F. N. Coton, Auteur . - 2009 . - 8 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 8 p.
Mots-clés : oscillatory airfoils; dynamic stall onset Résumé : This research presents some common features of oscillatory airfoils, and the method for indicating dynamic stall onset for the unsteady process. Under deep stall conditions, the stall-onset angle in oscillation is independent of the mean angle of the oscillatory motion, and by combining the reduced frequency and the amplitude of the oscillatory motion, the equivalent reduced pitch rate is an analog of this motion to the constant reduced pitch rate of the ramp-up motion. By correlating with the measured data, and with the ramp-up results, the equivalent reduced pitch rate can be defined as a representation for the oscillatory motion. Accordingly, the triple-parameter problem of an oscillation (mean angle, reduced frequency, and amplitude) degrades into the single-parameter problem (equivalent reduced pitch rate). Based on these foundations, an extension of the stall-onset criterion is then made for oscillatory airfoils: a method of extracting the stall-onset parameters directly from oscillatory test data, and an indication of stall onset for the oscillatory airfoils. The results from the new proposed method have shown the consistency with the data of Glasgow University and the public data. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] A general macroscopic turbulence model for flows in packed beds, channels, pipes, and rod bundles / A. Nakayama in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 7 p.
Titre : A general macroscopic turbulence model for flows in packed beds, channels, pipes, and rod bundles Type de document : texte imprimé Auteurs : A. Nakayama, Auteur ; F. Kuwahara, Auteur Année de publication : 2009 Article en page(s) : 7 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Turbulence; kinetic energy; pipes; flow (Dynamics); channels (Hydraulic engineering); equations; fuel rods; porous materials Résumé : This study focuses on Nakayama and Kuwahara’s two-equation turbulence model and its modifications, previously proposed for flows in porous media, on the basis of the volume averaging theory. Nakayama and Kuwahara’s model is generalized so that it can be applied to most complex turbulent flows such as cross flows in banks of cylinders and packed beds, and longitudinal flows in channels, pipes, and rod bundles. For generalization, we shall reexamine the extra production terms due to the presence of the porous media, appearing in the transport equations of turbulence kinetic energy and its dissipation rate. In particular, we shall consider the mean flow kinetic energy balance within a pore, so as to seek general expressions for these additional production terms, which are valid for most kinds of porous media morphology. Thus, we establish the macroscopic turbulence model, which does not require any prior microscopic numerical experiments for the structure. Hence, for the given permeability and Forchheimer coefficient, the model can be used for analyzing most complex turbulent flow situations in homogeneous porous media without a detailed morphological information. Preliminary examination of the model made for the cases of packed bed flows and longitudinal flows through pipes and channels reveals its high versatility and performance. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] A general macroscopic turbulence model for flows in packed beds, channels, pipes, and rod bundles [texte imprimé] / A. Nakayama, Auteur ; F. Kuwahara, Auteur . - 2009 . - 7 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 7 p.
Mots-clés : Turbulence; kinetic energy; pipes; flow (Dynamics); channels (Hydraulic engineering); equations; fuel rods; porous materials Résumé : This study focuses on Nakayama and Kuwahara’s two-equation turbulence model and its modifications, previously proposed for flows in porous media, on the basis of the volume averaging theory. Nakayama and Kuwahara’s model is generalized so that it can be applied to most complex turbulent flows such as cross flows in banks of cylinders and packed beds, and longitudinal flows in channels, pipes, and rod bundles. For generalization, we shall reexamine the extra production terms due to the presence of the porous media, appearing in the transport equations of turbulence kinetic energy and its dissipation rate. In particular, we shall consider the mean flow kinetic energy balance within a pore, so as to seek general expressions for these additional production terms, which are valid for most kinds of porous media morphology. Thus, we establish the macroscopic turbulence model, which does not require any prior microscopic numerical experiments for the structure. Hence, for the given permeability and Forchheimer coefficient, the model can be used for analyzing most complex turbulent flow situations in homogeneous porous media without a detailed morphological information. Preliminary examination of the model made for the cases of packed bed flows and longitudinal flows through pipes and channels reveals its high versatility and performance. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Performance characteristics of a microscale ranque–hilsch vortex tube / A. F. Hamoudi in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 8 p.
Titre : Performance characteristics of a microscale ranque–hilsch vortex tube Type de document : texte imprimé Auteurs : A. F. Hamoudi, Auteur ; A. Fartaj, Auteur ; G. W. Rankin, Auteur Année de publication : 2009 Article en page(s) : 8 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Pressure; flow (Dynamics); temperature; Reynolds number; microscale devices; vortices; geometry; performance characterization; valves; testing performance Résumé : The results of an experimental investigation of the energy separation performance of a microscale Ranque–Hilsch vortex tube are presented. The supply channel Reynolds number of a microscale Ranque–Hilsch vortex tube is varied over a considerable range, which extends into the laminar flow regime in order to determine the minimum conditions for cooling. Experiments are conducted for a fixed geometry and control valve setting. At low Reynolds numbers based on the inlet tube hydraulic diameter and average velocity, the results exhibit an increase in dimensionless temperature in both the hot and cold outlets as the Reynolds number is increased from zero, reaching maximum values below 500 and 1000, respectively. The hot outlet dimensionless temperature decreases after reaching its maximum and achieves a minimum value at a Reynolds number below 1500. It then increases steadily with further increases in Reynolds number. The cold outlet dimensionless temperature decreases steadily after the maximum to become negative at a Reynolds number of approximately 1800. This implies that the cooling effect occurs at Reynolds numbers consistent with turbulent flow. The performance characteristics of the microscale vortex tube operating at higher inlet pressures of 200kPa, 300kPa, and 400kPa with an average inlet temperature of 293.6K are also presented for cold air mass ratio values over the range of 0.05–0.95. An increase in the inlet pressure causes the values of the dimensionless cold temperature difference to increase over the whole range of the cold air mass fraction. An unstable operation is observed at a length to diameter ratio of approximately 10, causing radial mixing between the cold and hot flow streams and a dramatic change in the cold mass flow fraction plot. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Performance characteristics of a microscale ranque–hilsch vortex tube [texte imprimé] / A. F. Hamoudi, Auteur ; A. Fartaj, Auteur ; G. W. Rankin, Auteur . - 2009 . - 8 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 8 p.
Mots-clés : Pressure; flow (Dynamics); temperature; Reynolds number; microscale devices; vortices; geometry; performance characterization; valves; testing performance Résumé : The results of an experimental investigation of the energy separation performance of a microscale Ranque–Hilsch vortex tube are presented. The supply channel Reynolds number of a microscale Ranque–Hilsch vortex tube is varied over a considerable range, which extends into the laminar flow regime in order to determine the minimum conditions for cooling. Experiments are conducted for a fixed geometry and control valve setting. At low Reynolds numbers based on the inlet tube hydraulic diameter and average velocity, the results exhibit an increase in dimensionless temperature in both the hot and cold outlets as the Reynolds number is increased from zero, reaching maximum values below 500 and 1000, respectively. The hot outlet dimensionless temperature decreases after reaching its maximum and achieves a minimum value at a Reynolds number below 1500. It then increases steadily with further increases in Reynolds number. The cold outlet dimensionless temperature decreases steadily after the maximum to become negative at a Reynolds number of approximately 1800. This implies that the cooling effect occurs at Reynolds numbers consistent with turbulent flow. The performance characteristics of the microscale vortex tube operating at higher inlet pressures of 200kPa, 300kPa, and 400kPa with an average inlet temperature of 293.6K are also presented for cold air mass ratio values over the range of 0.05–0.95. An increase in the inlet pressure causes the values of the dimensionless cold temperature difference to increase over the whole range of the cold air mass fraction. An unstable operation is observed at a length to diameter ratio of approximately 10, causing radial mixing between the cold and hot flow streams and a dramatic change in the cold mass flow fraction plot. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Microscale flow through channels with a right-angled bend / V. Raghavan in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 6 p.
Titre : Microscale flow through channels with a right-angled bend : effect of fillet radius Type de document : texte imprimé Auteurs : V. Raghavan, Auteur ; B. Premachandran, Auteur Année de publication : 2009 Article en page(s) : 6 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Pressure; flow (Dynamics); channels (Hydraulic engineering); Knudsen number; microscale devices; slip flow; gas flow Résumé : Microscale gas flow through channels with a right-angled bend has been numerically analyzed to study the effect of the fillet radius on flow characteristics. The flow is assumed to be incompressible, laminar, and hydrodynamically developing. The fillet radius has been varied from zero, representing a sharp corner, to 0.6 times the height of the channel. The Knudsen number has been varied from zero, representing no-slip at the boundary, to 0.1, which is the limiting case for the slip-flow regime. A low Reynolds number of value 1 has been considered in the present study, which makes the flow to be within the incompressible slip-flow regime. The flow characteristics in terms of velocity profiles, velocity vectors, and the pressure ratio between the inlet and outlet of the channel have been presented for several cases. Results show that for the case of the fillet radius equal to zero, the flow separation occurs after the bend and due to this, the exit velocity profile changes significantly. The highest pressure ratio between the inlet and the outlet is required to maintain a specific mass flow rate for this case. The cases with a nonzero fillet radius exhibit exit velocity profiles identical to that of a straight channel. The pressure ratio decreases when the fillet radius and the Knudsen number are increased. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Microscale flow through channels with a right-angled bend : effect of fillet radius [texte imprimé] / V. Raghavan, Auteur ; B. Premachandran, Auteur . - 2009 . - 6 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 6 p.
Mots-clés : Pressure; flow (Dynamics); channels (Hydraulic engineering); Knudsen number; microscale devices; slip flow; gas flow Résumé : Microscale gas flow through channels with a right-angled bend has been numerically analyzed to study the effect of the fillet radius on flow characteristics. The flow is assumed to be incompressible, laminar, and hydrodynamically developing. The fillet radius has been varied from zero, representing a sharp corner, to 0.6 times the height of the channel. The Knudsen number has been varied from zero, representing no-slip at the boundary, to 0.1, which is the limiting case for the slip-flow regime. A low Reynolds number of value 1 has been considered in the present study, which makes the flow to be within the incompressible slip-flow regime. The flow characteristics in terms of velocity profiles, velocity vectors, and the pressure ratio between the inlet and outlet of the channel have been presented for several cases. Results show that for the case of the fillet radius equal to zero, the flow separation occurs after the bend and due to this, the exit velocity profile changes significantly. The highest pressure ratio between the inlet and the outlet is required to maintain a specific mass flow rate for this case. The cases with a nonzero fillet radius exhibit exit velocity profiles identical to that of a straight channel. The pressure ratio decreases when the fillet radius and the Knudsen number are increased. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] The influence of viscous effects and physical scale on cavitation tunnel contraction performance / P. A. Brandner in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 14 p.
Titre : The influence of viscous effects and physical scale on cavitation tunnel contraction performance Type de document : texte imprimé Auteurs : P. A. Brandner, Auteur ; J. L. Roberts, Auteur ; G. J. Walker, Auteur Année de publication : 2009 Article en page(s) : 14 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : cavitation tunnel Résumé : The general performance of an asymmetric cavitation tunnel contraction is investigated using computational fluid dynamics (CFD) including the effects of fluid viscosity and physical scale. The horizontal and vertical profiles of the contraction geometry were chosen from a family of four-term sixth-order polynomials based on results from a CFD analysis and a consideration of the wall curvature distribution and its anticipated influence on boundary layer behavior. Inviscid and viscous CFD analyses were performed. The viscous predictions were validated against boundary layer measurements on existing full-scale cavitation tunnel test section ceiling and floor and for the chosen contraction geometry against model-scale wind tunnel tests. The viscous analysis showed the displacement effect of boundary layers to have a fairing effect on the contraction profile that reduced the magnitude of local pressure extrema at the entrance and exit. The maximum pressure gradients and minimum achievable test section cavitation numbers predicted by the viscous analysis are correspondingly less than those predicted by the inviscid analysis. The prediction of cavitation onset is discussed in detail. The minimum cavitation number is shown to be a function of the Froude number based on the test section velocity and height that incorporate the effects of physical scale on cavitation tunnel performance. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] The influence of viscous effects and physical scale on cavitation tunnel contraction performance [texte imprimé] / P. A. Brandner, Auteur ; J. L. Roberts, Auteur ; G. J. Walker, Auteur . - 2009 . - 14 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 14 p.
Mots-clés : cavitation tunnel Résumé : The general performance of an asymmetric cavitation tunnel contraction is investigated using computational fluid dynamics (CFD) including the effects of fluid viscosity and physical scale. The horizontal and vertical profiles of the contraction geometry were chosen from a family of four-term sixth-order polynomials based on results from a CFD analysis and a consideration of the wall curvature distribution and its anticipated influence on boundary layer behavior. Inviscid and viscous CFD analyses were performed. The viscous predictions were validated against boundary layer measurements on existing full-scale cavitation tunnel test section ceiling and floor and for the chosen contraction geometry against model-scale wind tunnel tests. The viscous analysis showed the displacement effect of boundary layers to have a fairing effect on the contraction profile that reduced the magnitude of local pressure extrema at the entrance and exit. The maximum pressure gradients and minimum achievable test section cavitation numbers predicted by the viscous analysis are correspondingly less than those predicted by the inviscid analysis. The prediction of cavitation onset is discussed in detail. The minimum cavitation number is shown to be a function of the Froude number based on the test section velocity and height that incorporate the effects of physical scale on cavitation tunnel performance. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Estimation of cavitation limits from local head loss coefficient / Raúl Sánchez in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 9 p.
Titre : Estimation of cavitation limits from local head loss coefficient Type de document : texte imprimé Auteurs : Raúl Sánchez, Auteur ; Luis Juana, Auteur ; Francisco V. Laguna, Auteur Année de publication : 2009 Article en page(s) : 9 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Cavitation effects; local head losses; avitation number values Résumé : Cavitation effects in valves and other sudden transitions in water distribution systems are studied as their better understanding and quantification is needed for design and analysis purposes and for predicting and controlling their operation. Two dimensionless coefficients are used to characterize and verify local effects under cavitating flow conditions: the coefficient of local head losses and the minimum value of the cavitation number. In principle, both coefficients must be determined experimentally, but a semianalytical relationship between them is here proposed so that if one of them is known, its value can be used to estimate the corresponding value of the other one. This relationship is experimentally contrasted by measuring head losses and flow rates. It is also shown that cavitation number values, called cavitation limits, such as the critical cavitation limit, can be related in a simple but practical way with the mentioned minimum cavitation number and with a given pressure fluctuation level. Head losses under conditions of cavitation in sharp-edged orifices and valves are predicted for changes in upstream and downstream boundary conditions. An experimental determination of the coefficient of local head losses and the minimum value of the cavitation number is not dependent on the boundary conditions even if vapor cavity extends far enough to reach a downstream pressure tap. Also, the effects of cavitation and displacement of moving parts of valves on head losses can be split. A relatively simple formulation for local head losses including cavitation influence is presented. It can be incorporated to water distribution analysis models to improve their results when cavitation occurs. Likewise, it can also be used to elaborate information about validity limits of head losses in valves and other sudden transitions and to interpret the results of head loss tests. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Estimation of cavitation limits from local head loss coefficient [texte imprimé] / Raúl Sánchez, Auteur ; Luis Juana, Auteur ; Francisco V. Laguna, Auteur . - 2009 . - 9 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 9 p.
Mots-clés : Cavitation effects; local head losses; avitation number values Résumé : Cavitation effects in valves and other sudden transitions in water distribution systems are studied as their better understanding and quantification is needed for design and analysis purposes and for predicting and controlling their operation. Two dimensionless coefficients are used to characterize and verify local effects under cavitating flow conditions: the coefficient of local head losses and the minimum value of the cavitation number. In principle, both coefficients must be determined experimentally, but a semianalytical relationship between them is here proposed so that if one of them is known, its value can be used to estimate the corresponding value of the other one. This relationship is experimentally contrasted by measuring head losses and flow rates. It is also shown that cavitation number values, called cavitation limits, such as the critical cavitation limit, can be related in a simple but practical way with the mentioned minimum cavitation number and with a given pressure fluctuation level. Head losses under conditions of cavitation in sharp-edged orifices and valves are predicted for changes in upstream and downstream boundary conditions. An experimental determination of the coefficient of local head losses and the minimum value of the cavitation number is not dependent on the boundary conditions even if vapor cavity extends far enough to reach a downstream pressure tap. Also, the effects of cavitation and displacement of moving parts of valves on head losses can be split. A relatively simple formulation for local head losses including cavitation influence is presented. It can be incorporated to water distribution analysis models to improve their results when cavitation occurs. Likewise, it can also be used to elaborate information about validity limits of head losses in valves and other sudden transitions and to interpret the results of head loss tests. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Influence of torque on the lift and drag of a particle in an oscillatory flow / Paul F. Fischer in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 9 p.
Titre : Influence of torque on the lift and drag of a particle in an oscillatory flow Type de document : texte imprimé Auteurs : Paul F. Fischer, Auteur ; Gary K. Leaf, Auteur ; Juan M. Restrepo, Auteur Année de publication : 2009 Article en page(s) : 9 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Torque; Oscillatory flow Résumé : In the work of Fischer (2002, “Forces on Particles in an Oscillatory Boundary Layer ,” J. Fluid Mech., 468, pp. 327–347, 2005; “Influence of Wall Proximity on the Lift and Drag of a Particle in an Oscillatory Flow ,” ASME J. Fluids Eng., 127, pp. 583–594) we computed the lift and drag forces on a sphere, subjected to a wall-bounded oscillatory flow. The forces were found as a function of the Reynolds number, the forcing frequency, and the gap between the particle and the ideally smooth rigid bounding wall. Here we investigate how the forces change as a function of the above parameters and its moment of inertia if the particle is allowed to freely rotate. Allowing the particle to rotate does not change appreciably the drag force, as compared to the drag experienced by the particle when it is held fixed. Lift differences between the rotating and nonrotating cases are shown to be primarily dominated in the mean by the pressure component. The lift of the rotating particle varies significantly from the fixed-particle case and depends strongly on the Reynolds number, the forcing frequency, and the gap; much less so on the moment of inertia. Of special significance is that the lift is enhanced for small Reynolds numbers and suppressed for larger ones, with a clear transition point. We also examine how the torque changes when the particle is allowed to rotate as compared to when it is held fixed. As a function of the Reynolds number the torque of the fixed sphere is monotonically decreasing in the range Re=5 to Re=400. The rotating-sphere counterpart experiences a smaller and more complex torque, synchronized with the lift transition mentioned before. As a function of the gap, the torque is significantly larger in the fixed particle case. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Influence of torque on the lift and drag of a particle in an oscillatory flow [texte imprimé] / Paul F. Fischer, Auteur ; Gary K. Leaf, Auteur ; Juan M. Restrepo, Auteur . - 2009 . - 9 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 9 p.
Mots-clés : Torque; Oscillatory flow Résumé : In the work of Fischer (2002, “Forces on Particles in an Oscillatory Boundary Layer ,” J. Fluid Mech., 468, pp. 327–347, 2005; “Influence of Wall Proximity on the Lift and Drag of a Particle in an Oscillatory Flow ,” ASME J. Fluids Eng., 127, pp. 583–594) we computed the lift and drag forces on a sphere, subjected to a wall-bounded oscillatory flow. The forces were found as a function of the Reynolds number, the forcing frequency, and the gap between the particle and the ideally smooth rigid bounding wall. Here we investigate how the forces change as a function of the above parameters and its moment of inertia if the particle is allowed to freely rotate. Allowing the particle to rotate does not change appreciably the drag force, as compared to the drag experienced by the particle when it is held fixed. Lift differences between the rotating and nonrotating cases are shown to be primarily dominated in the mean by the pressure component. The lift of the rotating particle varies significantly from the fixed-particle case and depends strongly on the Reynolds number, the forcing frequency, and the gap; much less so on the moment of inertia. Of special significance is that the lift is enhanced for small Reynolds numbers and suppressed for larger ones, with a clear transition point. We also examine how the torque changes when the particle is allowed to rotate as compared to when it is held fixed. As a function of the Reynolds number the torque of the fixed sphere is monotonically decreasing in the range Re=5 to Re=400. The rotating-sphere counterpart experiences a smaller and more complex torque, synchronized with the lift transition mentioned before. As a function of the gap, the torque is significantly larger in the fixed particle case. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Large eddy simulation of flow past free surface piercing circular cylinders / G. Yu in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 9 p.
Titre : Large eddy simulation of flow past free surface piercing circular cylinders Type de document : texte imprimé Auteurs : G. Yu, Auteur ; E. J. Avital, Auteur ; J. J. Williams, Auteur Année de publication : 2009 Article en page(s) : 9 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Flow (Dynamics); wakes; cylinders; water; drag (Fluid dynamics); vortices; large eddy simulation; Reynolds number Résumé : Flows past a free surface piercing cylinder are studied numerically by large eddy simulation at Froude numbers up to FrD=3.0 and Reynolds numbers up to ReD=1×105. A two-phase volume of fluid technique is employed to simulate the air-water flow and a flux corrected transport algorithm for transport of the interface. The effect of the free surface on the vortex structure in the near wake is investigated in detail together with the loadings on the cylinder at various Reynolds and Froude numbers. The computational results show that the free surface inhibits the vortex generation in the near wake, and as a result, reduces the vorticity and vortex shedding. At higher Froude numbers, this effect is stronger and vortex structures exhibit a 3D feature. However, the free surface effect is attenuated as Reynolds number increases. The time-averaged drag force on the unit height of a cylinder is shown to vary along the cylinder and the variation depends largely on Froude number. For flows at ReD=2.7×104, a negative pressure zone is developed in both the air and water regions near the free surface leading to a significant increase of drag force on the cylinder in the vicinity of the free surface at about FrD=2.0. The mean value of the overall drag force on the cylinder increases with Reynolds number and decreases with Froude number but the reduction is very small for FrD=1.6–2.0. The dominant Strouhal number of the lift oscillation decreases with Reynolds number but increases with Froude number. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Large eddy simulation of flow past free surface piercing circular cylinders [texte imprimé] / G. Yu, Auteur ; E. J. Avital, Auteur ; J. J. Williams, Auteur . - 2009 . - 9 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 9 p.
Mots-clés : Flow (Dynamics); wakes; cylinders; water; drag (Fluid dynamics); vortices; large eddy simulation; Reynolds number Résumé : Flows past a free surface piercing cylinder are studied numerically by large eddy simulation at Froude numbers up to FrD=3.0 and Reynolds numbers up to ReD=1×105. A two-phase volume of fluid technique is employed to simulate the air-water flow and a flux corrected transport algorithm for transport of the interface. The effect of the free surface on the vortex structure in the near wake is investigated in detail together with the loadings on the cylinder at various Reynolds and Froude numbers. The computational results show that the free surface inhibits the vortex generation in the near wake, and as a result, reduces the vorticity and vortex shedding. At higher Froude numbers, this effect is stronger and vortex structures exhibit a 3D feature. However, the free surface effect is attenuated as Reynolds number increases. The time-averaged drag force on the unit height of a cylinder is shown to vary along the cylinder and the variation depends largely on Froude number. For flows at ReD=2.7×104, a negative pressure zone is developed in both the air and water regions near the free surface leading to a significant increase of drag force on the cylinder in the vicinity of the free surface at about FrD=2.0. The mean value of the overall drag force on the cylinder increases with Reynolds number and decreases with Froude number but the reduction is very small for FrD=1.6–2.0. The dominant Strouhal number of the lift oscillation decreases with Reynolds number but increases with Froude number. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Extended angular range of a three-hole cobra pressure probe for incompressible flow / Katia María Argüelles Díaz in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 6 p.
Titre : Extended angular range of a three-hole cobra pressure probe for incompressible flow Type de document : texte imprimé Auteurs : Katia María Argüelles Díaz, Auteur ; Jesús Manuel Fernández Oro, Auteur ; Eduardo Blanco Marigorta, Auteur Année de publication : 2009 Article en page(s) : 6 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Three-hole cobra; angular range; calibration; data reduction method Résumé : This paper analyzes the operative characteristics of a three-hole cobra type probe especially designed to attain an angular range higher than 180deg for planar turbulent flows. A new calibration and data reduction method are also introduced, discriminating three different zones inside the angular range of the calibration. This methodology improves the probe performance, extending its operative angular range from the typical ±30degto±105deg. In addition, the transmission of the uncertainty—from the pressure measurements to the flow variables—is estimated, showing reasonably low levels for the whole angular range. Furthermore, the sensibility of the probe calibration to the Reynolds number and the pitch angle is considered, and the influence of the turbulence level is outlined. Regarding these factors, the probe precision in the extended angular range is found to be similar to that of the traditional range. Finally, the probe is tested in a flow field with large variations of the incidence angle, and the results obtained with the new method are compared to those given by the traditional calibration. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Extended angular range of a three-hole cobra pressure probe for incompressible flow [texte imprimé] / Katia María Argüelles Díaz, Auteur ; Jesús Manuel Fernández Oro, Auteur ; Eduardo Blanco Marigorta, Auteur . - 2009 . - 6 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 6 p.
Mots-clés : Three-hole cobra; angular range; calibration; data reduction method Résumé : This paper analyzes the operative characteristics of a three-hole cobra type probe especially designed to attain an angular range higher than 180deg for planar turbulent flows. A new calibration and data reduction method are also introduced, discriminating three different zones inside the angular range of the calibration. This methodology improves the probe performance, extending its operative angular range from the typical ±30degto±105deg. In addition, the transmission of the uncertainty—from the pressure measurements to the flow variables—is estimated, showing reasonably low levels for the whole angular range. Furthermore, the sensibility of the probe calibration to the Reynolds number and the pitch angle is considered, and the influence of the turbulence level is outlined. Regarding these factors, the probe precision in the extended angular range is found to be similar to that of the traditional range. Finally, the probe is tested in a flow field with large variations of the incidence angle, and the results obtained with the new method are compared to those given by the traditional calibration. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Pressure drop through anisotropic porous mediumlike cylinder bundles in turbulent flow regime / Tongbeum Kim in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 5 p.
Titre : Pressure drop through anisotropic porous mediumlike cylinder bundles in turbulent flow regime Type de document : texte imprimé Auteurs : Tongbeum Kim, Auteur ; Tian Jian Lu, Auteur Année de publication : 2009 Article en page(s) : 5 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Pressure drop; turbulent flow regime; cylinder bundles; yaw angle; anisotropic measure Résumé : Pressure drop through anisotropic porous mediumlike cylinder bundles is experimentally examined in turbulent flow regime. Three porosities, ε=0.66, 0.82, and 0.90, are considered. The flow blockage by the cylinder bundles is varied, with the yaw angle (α) used as an anisotropic measure. When the yaw angle is fixed while the porosity is varied, the pressure drop behaves as predicted by the force balance model, consistent with the classic observation: The pressure drop is proportional to the square of the flow velocity with the empirical proportionality as a function of (1−ε1∕2)∕ε2 obtained from the force balance model compared to that of (1−ε)∕ε3 from the hydraulic radius theory. On the other hand, for a given porosity, topological anisotropy of the cylinder bundles causes the sinusoidal response of the pressure drop to the variation of yaw angle. At α=0deg with a 60deg period, the lowest pressure drop occurs from the most open configuration of the cylinder bundle whereas the largest flow blockage at α=30deg causes the highest pressure drop. This variation appears to result from an increase in the drag coefficient of each cylinder element in a harmonic manner. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Pressure drop through anisotropic porous mediumlike cylinder bundles in turbulent flow regime [texte imprimé] / Tongbeum Kim, Auteur ; Tian Jian Lu, Auteur . - 2009 . - 5 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 5 p.
Mots-clés : Pressure drop; turbulent flow regime; cylinder bundles; yaw angle; anisotropic measure Résumé : Pressure drop through anisotropic porous mediumlike cylinder bundles is experimentally examined in turbulent flow regime. Three porosities, ε=0.66, 0.82, and 0.90, are considered. The flow blockage by the cylinder bundles is varied, with the yaw angle (α) used as an anisotropic measure. When the yaw angle is fixed while the porosity is varied, the pressure drop behaves as predicted by the force balance model, consistent with the classic observation: The pressure drop is proportional to the square of the flow velocity with the empirical proportionality as a function of (1−ε1∕2)∕ε2 obtained from the force balance model compared to that of (1−ε)∕ε3 from the hydraulic radius theory. On the other hand, for a given porosity, topological anisotropy of the cylinder bundles causes the sinusoidal response of the pressure drop to the variation of yaw angle. At α=0deg with a 60deg period, the lowest pressure drop occurs from the most open configuration of the cylinder bundle whereas the largest flow blockage at α=30deg causes the highest pressure drop. This variation appears to result from an increase in the drag coefficient of each cylinder element in a harmonic manner. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] Benchmark experimental data for fully stalled wide-angled diffusers / K Kibicho in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 4 p.
Titre : Benchmark experimental data for fully stalled wide-angled diffusers Type de document : texte imprimé Auteurs : K Kibicho, Auteur ; A. T. Sayers, Auteur Année de publication : 2009 Article en page(s) : 4 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Attached flow; fluid dynamics modelers; streamwise; Reynolds number Résumé : Due to adverse pressure gradient along the diverging walls of wide-angled diffusers, the attached flow separates from one wall and remains attached permanently to the other wall in a process called stalling. Separated diffuser flows provide a classical case of pressure driven flow separation. Such flows present a very serious challenge to fluid dynamics modelers. This paper provides a data bank contribution for the streamwise mean velocity field and pressure recovery data in wide-angled diffusers. Turbulent mean flow measurements were carried out at Reynolds numbers between 1.07×105 and 2.14×105 based on inlet hydraulic diameter and centerline velocity for diffusers whose divergence angles were between 30 deg and 50 deg. The results presented provide a reliable validation data bank for computational fluid dynamics studies for pressure driven flow separation studies. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Benchmark experimental data for fully stalled wide-angled diffusers [texte imprimé] / K Kibicho, Auteur ; A. T. Sayers, Auteur . - 2009 . - 4 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 4 p.
Mots-clés : Attached flow; fluid dynamics modelers; streamwise; Reynolds number Résumé : Due to adverse pressure gradient along the diverging walls of wide-angled diffusers, the attached flow separates from one wall and remains attached permanently to the other wall in a process called stalling. Separated diffuser flows provide a classical case of pressure driven flow separation. Such flows present a very serious challenge to fluid dynamics modelers. This paper provides a data bank contribution for the streamwise mean velocity field and pressure recovery data in wide-angled diffusers. Turbulent mean flow measurements were carried out at Reynolds numbers between 1.07×105 and 2.14×105 based on inlet hydraulic diameter and centerline velocity for diffusers whose divergence angles were between 30 deg and 50 deg. The results presented provide a reliable validation data bank for computational fluid dynamics studies for pressure driven flow separation studies. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...]
Exemplaires
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
aucun exemplaire |