Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Transactions of the ASME . Journal of dynamic systems, measurement, and control / Auslander, D. M. . Vol. 132 N° 5Journal of dynamic systems, measurement, and control: Transactions of the ASMEMention de date : Septembre 2010 Paru le : 25/10/2010 |
Dépouillements
Ajouter le résultat dans votre panierMagnetically suspended VSCMGs for simultaneous attitude control and power transfer IPAC service / Park, Junyoung in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 15 p.
Titre : Magnetically suspended VSCMGs for simultaneous attitude control and power transfer IPAC service Type de document : texte imprimé Auteurs : Park, Junyoung, Auteur ; Palazzolo, Alan, Auteur Année de publication : 2010 Article en page(s) : 15 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Artificial satellites Attitude control Gyroscopes Velocity control Vibrations Wheels Index. décimale : 629.8 Résumé : This paper presents the theory and numerical results of utilizing four gimbaled, magnetically suspended, variable speed flywheels for simultaneous satellite attitude control and power transfer (charge, storage, and delivery). Previous variable speed control moment gyro models and control algorithms assumed that the flywheel bearings were rigid. However, high speed flywheels on spacecraft will be supported by active magnetic bearings, which have flexibility and in general frequency dependent characteristics. The present work provides the theory for modeling the satellite and flywheel systems including controllers for stable magnetic bearing suspension for power transfer to and from the flywheels and for attitude control of the satellite. A major reason for utilizing flexible bearings is to isolate the imbalance disturbance forces from the flywheel to the satellite. This g-jitter vibration could interfere with the operation of sensitive onboard instrumentation. A special control approach is employed for the magnetic bearings to reject the imbalance disturbances. The stability, robustness, tracking, and disturbance rejection performances of the feedback control laws are demonstrated with a satellite simulation that includes initial attitude error, system modeling error, and flywheel imbalance disturbance. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Magnetically suspended VSCMGs for simultaneous attitude control and power transfer IPAC service [texte imprimé] / Park, Junyoung, Auteur ; Palazzolo, Alan, Auteur . - 2010 . - 15 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 15 p.
Mots-clés : Artificial satellites Attitude control Gyroscopes Velocity control Vibrations Wheels Index. décimale : 629.8 Résumé : This paper presents the theory and numerical results of utilizing four gimbaled, magnetically suspended, variable speed flywheels for simultaneous satellite attitude control and power transfer (charge, storage, and delivery). Previous variable speed control moment gyro models and control algorithms assumed that the flywheel bearings were rigid. However, high speed flywheels on spacecraft will be supported by active magnetic bearings, which have flexibility and in general frequency dependent characteristics. The present work provides the theory for modeling the satellite and flywheel systems including controllers for stable magnetic bearing suspension for power transfer to and from the flywheels and for attitude control of the satellite. A major reason for utilizing flexible bearings is to isolate the imbalance disturbance forces from the flywheel to the satellite. This g-jitter vibration could interfere with the operation of sensitive onboard instrumentation. A special control approach is employed for the magnetic bearings to reject the imbalance disturbances. The stability, robustness, tracking, and disturbance rejection performances of the feedback control laws are demonstrated with a satellite simulation that includes initial attitude error, system modeling error, and flywheel imbalance disturbance. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Output saturation in electric motor systems / Kyoungchul Kong in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 08 p.
Titre : Output saturation in electric motor systems : identification and controller design Type de document : texte imprimé Auteurs : Kyoungchul Kong, Auteur ; Helge C. Kniep, Auteur ; Tomizuka, Masayoshi, Auteur Année de publication : 2010 Article en page(s) : 08 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Angular velocity Ball bearings Brushless DC motors Control system synthesis Design Kalman filters Machine control Machine windings Three-term control Index. décimale : 629.8 Résumé : Input saturation is a well-known nonlinearity in mechanical control systems; it constrains the maximum acceleration, which results in the limitation of the system response time. Input saturation has been considered in controller design in various ways, e.g., antiwindup control. In addition to the input, the state variables of mechanical systems are often subjected to saturation. For example, the maximum angular velocity of electric motor systems is limited by the maximum voltage provided to the motor windings. In the case of electronically commutated motors (i.e., brushless dc motors), the maximum speed is additionally constrained by limitations of the servo amplifier output. If gears are utilized, further constraints are introduced due to resonances in ball bearings and/or velocity dependent friction. Although such factors are significant in practice, they have not been fully considered in controller design. This paper investigates the input and output saturations, and presents how they may be considered in the controller design; a Kalman filter, a PID controller, and a disturbance observer are designed, taking input/output saturations into consideration. A case study is provided to verify the proposed methods. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Output saturation in electric motor systems : identification and controller design [texte imprimé] / Kyoungchul Kong, Auteur ; Helge C. Kniep, Auteur ; Tomizuka, Masayoshi, Auteur . - 2010 . - 08 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 08 p.
Mots-clés : Angular velocity Ball bearings Brushless DC motors Control system synthesis Design Kalman filters Machine control Machine windings Three-term control Index. décimale : 629.8 Résumé : Input saturation is a well-known nonlinearity in mechanical control systems; it constrains the maximum acceleration, which results in the limitation of the system response time. Input saturation has been considered in controller design in various ways, e.g., antiwindup control. In addition to the input, the state variables of mechanical systems are often subjected to saturation. For example, the maximum angular velocity of electric motor systems is limited by the maximum voltage provided to the motor windings. In the case of electronically commutated motors (i.e., brushless dc motors), the maximum speed is additionally constrained by limitations of the servo amplifier output. If gears are utilized, further constraints are introduced due to resonances in ball bearings and/or velocity dependent friction. Although such factors are significant in practice, they have not been fully considered in controller design. This paper investigates the input and output saturations, and presents how they may be considered in the controller design; a Kalman filter, a PID controller, and a disturbance observer are designed, taking input/output saturations into consideration. A case study is provided to verify the proposed methods. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Dynamic modelling and control of semifree-piston motion in a rotary diesel generator concept / J. F. Dunne in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 12 p.
Titre : Dynamic modelling and control of semifree-piston motion in a rotary diesel generator concept Type de document : texte imprimé Auteurs : J. F. Dunne, Auteur Année de publication : 2010 Article en page(s) : 12 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Combustion Elasticity Electric vehicles Engines Feedback Motion control Position control Springs (mechanical) Index. décimale : 629.8 Résumé : A new semifree-piston rotary generator concept is modelled dynamically and reduced to a single equation for piston stroke motion. This new concept comprises a toroidal-segment piston and cylinder, which orbit on separate generator disks, coupled by a pair of torsion springs to form a balanced mass-elastic system capable of spin. Conventional cyclic combustion takes place in the cylinder causing resonant motion of the disks. A two-part control strategy is proposed and tested by simulation to address the multi-objectives of maximum mechanical power transfer, minimum peak generator torque, and accurate piston top dead center (TDC) position control. A Part I strategy initially assumes that the combustion gas pressure is a function of time only. This produces torque control that follows a stroke velocity feedback law, which maximizes power transfer and implicitly minimizes generator torque, at the same time as power generation. When stroke-dependent gas pressure is introduced, however, the Part I strategy creates an unstable self-excited nonlinear system. The Part II strategy is designed to control piston TDC position and stabilize the response. This uses proportional control of gas pressure rise, assumed possible through fuel injection control and in-cylinder pressure sensing. An ideal-air-standard-dual-combustion two-stroke cycle is then adopted for nonstochastic simulation purposes, excluding the effect of delays and coupled system dynamics. A study is undertaken of a nominal 1.42 l, 200 mm orbit-radius, constant-pressure-scavenged diesel design with three different spring stiffness values. By focusing near the minimum compression ratio for diesel, to give a lower bound on the possible ideal output power, control gains are found that produce stable motion with piston TDC position errors of less than 1%. The power range is from 16 kW to 336 kW, depending mainly on spring stiffness. Since the concept can also store significant kinetic energy, it is potentially attractive as a range-extender for electric vehicles. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Dynamic modelling and control of semifree-piston motion in a rotary diesel generator concept [texte imprimé] / J. F. Dunne, Auteur . - 2010 . - 12 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 12 p.
Mots-clés : Combustion Elasticity Electric vehicles Engines Feedback Motion control Position control Springs (mechanical) Index. décimale : 629.8 Résumé : A new semifree-piston rotary generator concept is modelled dynamically and reduced to a single equation for piston stroke motion. This new concept comprises a toroidal-segment piston and cylinder, which orbit on separate generator disks, coupled by a pair of torsion springs to form a balanced mass-elastic system capable of spin. Conventional cyclic combustion takes place in the cylinder causing resonant motion of the disks. A two-part control strategy is proposed and tested by simulation to address the multi-objectives of maximum mechanical power transfer, minimum peak generator torque, and accurate piston top dead center (TDC) position control. A Part I strategy initially assumes that the combustion gas pressure is a function of time only. This produces torque control that follows a stroke velocity feedback law, which maximizes power transfer and implicitly minimizes generator torque, at the same time as power generation. When stroke-dependent gas pressure is introduced, however, the Part I strategy creates an unstable self-excited nonlinear system. The Part II strategy is designed to control piston TDC position and stabilize the response. This uses proportional control of gas pressure rise, assumed possible through fuel injection control and in-cylinder pressure sensing. An ideal-air-standard-dual-combustion two-stroke cycle is then adopted for nonstochastic simulation purposes, excluding the effect of delays and coupled system dynamics. A study is undertaken of a nominal 1.42 l, 200 mm orbit-radius, constant-pressure-scavenged diesel design with three different spring stiffness values. By focusing near the minimum compression ratio for diesel, to give a lower bound on the possible ideal output power, control gains are found that produce stable motion with piston TDC position errors of less than 1%. The power range is from 16 kW to 336 kW, depending mainly on spring stiffness. Since the concept can also store significant kinetic energy, it is potentially attractive as a range-extender for electric vehicles. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Multibody dynamic model of web guiding system with moving web / Lei Yu in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 10 p.
Titre : Multibody dynamic model of web guiding system with moving web Type de document : texte imprimé Auteurs : Lei Yu, Auteur ; Zhao, Zhihua, Auteur ; Gexue Ren, Auteur Année de publication : 2010 Article en page(s) : 10 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Absolute nodal coordinate formulation Thin plate element Lagrangian formulation Frictional contact Moving web Web guiding system Lateral dynamics Control Index. décimale : 629.8 Résumé : In this paper, a multibody dynamic model is established to simulate the dynamics and control of moving web with its guiding system, where the term moving web is used to describe thin materials, which are manufactured and processed in a continuous, flexible strip form. In contrast with available researches based on Eulerian description and beam assumption, webs are described by Lagrangian formulation with the absolute nodal coordinate formulation (ANCF) plate element, which is based on Kirchhoff's assumptions that material normals to the original reference surface remain straight and normal to the deformed reference surface, and the nonlinear elasticity theory that accounts for large displacement, large rotation, and large deformation. The rollers and guiding mechanism are modeled as rigid bodies. The distributed frictional contact forces between rollers and web are considered by Hertz contact model and are evaluated by Gauss quadrature. The proportional integral (PI) control law for web guiding is also embedded in the multibody model. A series of simulations on a typical web-guide system is carried out using the multibody dynamics approach for web guiding system presented in this study. System dynamical information, for example, lateral displacement, stress distribution, and driving moment for web guiding, are obtained from simulations. Parameter sensitivity analysis illustrates the effect of influence variables and effectiveness of the PI control law for lateral movement control of web that are verified under different gains. The present Lagrangian formulation of web element, i.e., ANCF element, is not only capable of describing the large movement and deformation but also easily adapted to capture the distributed contact forces between web and rollers. The dynamical behavior of the moving web can be accurately described by a small number of ANCF thin plate elements. Simulations carried out in this paper show that the present approach is an effective method to assess the design of web guiding system with easily available desktop computers. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Multibody dynamic model of web guiding system with moving web [texte imprimé] / Lei Yu, Auteur ; Zhao, Zhihua, Auteur ; Gexue Ren, Auteur . - 2010 . - 10 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 10 p.
Mots-clés : Absolute nodal coordinate formulation Thin plate element Lagrangian formulation Frictional contact Moving web Web guiding system Lateral dynamics Control Index. décimale : 629.8 Résumé : In this paper, a multibody dynamic model is established to simulate the dynamics and control of moving web with its guiding system, where the term moving web is used to describe thin materials, which are manufactured and processed in a continuous, flexible strip form. In contrast with available researches based on Eulerian description and beam assumption, webs are described by Lagrangian formulation with the absolute nodal coordinate formulation (ANCF) plate element, which is based on Kirchhoff's assumptions that material normals to the original reference surface remain straight and normal to the deformed reference surface, and the nonlinear elasticity theory that accounts for large displacement, large rotation, and large deformation. The rollers and guiding mechanism are modeled as rigid bodies. The distributed frictional contact forces between rollers and web are considered by Hertz contact model and are evaluated by Gauss quadrature. The proportional integral (PI) control law for web guiding is also embedded in the multibody model. A series of simulations on a typical web-guide system is carried out using the multibody dynamics approach for web guiding system presented in this study. System dynamical information, for example, lateral displacement, stress distribution, and driving moment for web guiding, are obtained from simulations. Parameter sensitivity analysis illustrates the effect of influence variables and effectiveness of the PI control law for lateral movement control of web that are verified under different gains. The present Lagrangian formulation of web element, i.e., ANCF element, is not only capable of describing the large movement and deformation but also easily adapted to capture the distributed contact forces between web and rollers. The dynamical behavior of the moving web can be accurately described by a small number of ANCF thin plate elements. Simulations carried out in this paper show that the present approach is an effective method to assess the design of web guiding system with easily available desktop computers. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Robust fuzzy tracking control design for a class of nonlinear stochastic markovian jump systems / Ran Huang in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 09 p.
Titre : Robust fuzzy tracking control design for a class of nonlinear stochastic markovian jump systems Type de document : texte imprimé Auteurs : Ran Huang, Auteur ; Yan Lin, Auteur ; Zhongwei Lin, Auteur Année de publication : 2010 Article en page(s) : 09 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Robust tracking control Fuzzy approximation Nonlinear stochastic systems Markovian jumps Index. décimale : 629.8 Résumé : This paper deals with the problem of robust fuzzy tracking control design for a class of nonlinear stochastic Itô-type systems with Markovian jumps. Considering the fuzzy approximation errors as norm-bounded uncertainties, we derive two sufficient conditions for the nonlinear stochastic robust fuzzy tracking control in terms of coupled matrix inequalities, which ensure the globally asymptotical stability in probability and [script L]2 property for the augmented system, respectively. Then, a systematic algorithm is developed to construct the robust fuzzy tracking controller by reformulating the coupled matrix inequalities into two intertwined linear matrix inequalities (LMIs). Finally, a simulation example is presented to illustrate the design procedure. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Robust fuzzy tracking control design for a class of nonlinear stochastic markovian jump systems [texte imprimé] / Ran Huang, Auteur ; Yan Lin, Auteur ; Zhongwei Lin, Auteur . - 2010 . - 09 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 09 p.
Mots-clés : Robust tracking control Fuzzy approximation Nonlinear stochastic systems Markovian jumps Index. décimale : 629.8 Résumé : This paper deals with the problem of robust fuzzy tracking control design for a class of nonlinear stochastic Itô-type systems with Markovian jumps. Considering the fuzzy approximation errors as norm-bounded uncertainties, we derive two sufficient conditions for the nonlinear stochastic robust fuzzy tracking control in terms of coupled matrix inequalities, which ensure the globally asymptotical stability in probability and [script L]2 property for the augmented system, respectively. Then, a systematic algorithm is developed to construct the robust fuzzy tracking controller by reformulating the coupled matrix inequalities into two intertwined linear matrix inequalities (LMIs). Finally, a simulation example is presented to illustrate the design procedure. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Dynamic thermomechanical modeling of a wet shape memory alloy actuator / Joel D. Ertel in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 09 p.
Titre : Dynamic thermomechanical modeling of a wet shape memory alloy actuator Type de document : texte imprimé Auteurs : Joel D. Ertel, Auteur ; Stephen A. Mascaro, Auteur Année de publication : 2010 Article en page(s) : 09 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Actuators Alloys Heat transfer Shape memory effects Index. décimale : 629.8 Résumé : This paper presents combined thermal and mechanical models of a wet shape memory alloy (SMA) wire actuator. The actuator consists of a SMA wire suspended concentrically in a compliant tube. Actuation occurs as hot and cold water that are alternately pumped through the tube to contract and extend the wire, respectively. The thermomechanical model presented in this paper accounts for the nonuniform temperature change of the SMA wire due to alternating the temperature of the flow along the wire. The thermal portion of the model consists of analysis of the heat transfer between the fluid and the SMA wire. Heat loss to the environment and the temperature change of the fluid through the actuator are taken into account. Based on this analysis, the temperature of the wire at segments along its length can be determined as a function of time. The mechanical portion of the model approximates the strain-martensite fraction and martensite fraction-temperature relationships. By combining the thermal and mechanical models, the displacement of the wire can be determined as a function of time. The combined thermomechanical model will be useful for predicting the performance of wet SMA actuators in a variety of applications. DEWEY : 629.8 ISSN : 002-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Dynamic thermomechanical modeling of a wet shape memory alloy actuator [texte imprimé] / Joel D. Ertel, Auteur ; Stephen A. Mascaro, Auteur . - 2010 . - 09 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 09 p.
Mots-clés : Actuators Alloys Heat transfer Shape memory effects Index. décimale : 629.8 Résumé : This paper presents combined thermal and mechanical models of a wet shape memory alloy (SMA) wire actuator. The actuator consists of a SMA wire suspended concentrically in a compliant tube. Actuation occurs as hot and cold water that are alternately pumped through the tube to contract and extend the wire, respectively. The thermomechanical model presented in this paper accounts for the nonuniform temperature change of the SMA wire due to alternating the temperature of the flow along the wire. The thermal portion of the model consists of analysis of the heat transfer between the fluid and the SMA wire. Heat loss to the environment and the temperature change of the fluid through the actuator are taken into account. Based on this analysis, the temperature of the wire at segments along its length can be determined as a function of time. The mechanical portion of the model approximates the strain-martensite fraction and martensite fraction-temperature relationships. By combining the thermal and mechanical models, the displacement of the wire can be determined as a function of time. The combined thermomechanical model will be useful for predicting the performance of wet SMA actuators in a variety of applications. DEWEY : 629.8 ISSN : 002-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] New stabilization schemes for linear hybrid systems with time-varying delays / Magdi S. Mahmoud in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 11 p.
Titre : New stabilization schemes for linear hybrid systems with time-varying delays Type de document : texte imprimé Auteurs : Magdi S. Mahmoud, Auteur ; Elferik, Sami A., Auteur Année de publication : 2010 Article en page(s) : 11 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Switched systems Time-dely systems PPD feedback H[infinity] stabilization LMIs Index. décimale : 629.8 Résumé : In this paper, we provide new stabilization schemes for a class of linear hybrid time-delay systems under arbitrary switching. These schemes are delay-independent and delay-dependent [script H][infinity] stabilization based on proportional-plus-derivative (PPD) feedback strategy. By adopting a selective Lyapunov–Krasovskii functional, new criteria are constructed in a systematic way in terms of feasibility testing of linear matrix inequalities (LMIs). When the time delay is a continuous bounded function, we derive the solution for nominal and polytopic models and identify several existing results as special cases. In case the time delay is a differentiable time-varying function satisfying some bounding relations, we establish a new parametrized LMI characterization for PPD feedback stabilization. The theoretical developments are illustrated on examples of combustion in rocket motor chambers, river pollution control, and resilience analysis, and the ensuing results are compared with the conventional feedback stabilization. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] New stabilization schemes for linear hybrid systems with time-varying delays [texte imprimé] / Magdi S. Mahmoud, Auteur ; Elferik, Sami A., Auteur . - 2010 . - 11 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 11 p.
Mots-clés : Switched systems Time-dely systems PPD feedback H[infinity] stabilization LMIs Index. décimale : 629.8 Résumé : In this paper, we provide new stabilization schemes for a class of linear hybrid time-delay systems under arbitrary switching. These schemes are delay-independent and delay-dependent [script H][infinity] stabilization based on proportional-plus-derivative (PPD) feedback strategy. By adopting a selective Lyapunov–Krasovskii functional, new criteria are constructed in a systematic way in terms of feasibility testing of linear matrix inequalities (LMIs). When the time delay is a continuous bounded function, we derive the solution for nominal and polytopic models and identify several existing results as special cases. In case the time delay is a differentiable time-varying function satisfying some bounding relations, we establish a new parametrized LMI characterization for PPD feedback stabilization. The theoretical developments are illustrated on examples of combustion in rocket motor chambers, river pollution control, and resilience analysis, and the ensuing results are compared with the conventional feedback stabilization. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Robust stochastic design of linear controlled systems for performance optimization / Alexandros A. Taflanidis in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 15 p.
Titre : Robust stochastic design of linear controlled systems for performance optimization Type de document : texte imprimé Auteurs : Alexandros A. Taflanidis, Auteur ; Scruggs, Jeffrey T., Auteur ; James L. Beck, Auteur Année de publication : 2010 Article en page(s) : 15 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Control system synthesis Linear systems Optimal control Robust control Stability Structural engineering Vibration control Index. décimale : 629.8 Résumé : This study discusses a robust controller synthesis methodology for linear, time invariant systems, under probabilistic parameter uncertainty. Optimization of probabilistic performance robustness for [script H]2 and multi-objective [script H]2 measures is investigated, as well as for performance measures based on first-passage system reliability. The control optimization approaches proposed here exploit recent advances in stochastic simulation techniques. The approach is illustrated for vibration response suppression of a civil structure. The results illustrate that, for problems with probabilistic uncertainty, the explicit optimization of probabilistic performance robustness can result in markedly different optimal feedback laws, as well as enhanced performance robustness, when compared to traditional “worst-case” notions of robust optimal control. DEWEY : 629.8 ISSN : 002-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Robust stochastic design of linear controlled systems for performance optimization [texte imprimé] / Alexandros A. Taflanidis, Auteur ; Scruggs, Jeffrey T., Auteur ; James L. Beck, Auteur . - 2010 . - 15 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 15 p.
Mots-clés : Control system synthesis Linear systems Optimal control Robust control Stability Structural engineering Vibration control Index. décimale : 629.8 Résumé : This study discusses a robust controller synthesis methodology for linear, time invariant systems, under probabilistic parameter uncertainty. Optimization of probabilistic performance robustness for [script H]2 and multi-objective [script H]2 measures is investigated, as well as for performance measures based on first-passage system reliability. The control optimization approaches proposed here exploit recent advances in stochastic simulation techniques. The approach is illustrated for vibration response suppression of a civil structure. The results illustrate that, for problems with probabilistic uncertainty, the explicit optimization of probabilistic performance robustness can result in markedly different optimal feedback laws, as well as enhanced performance robustness, when compared to traditional “worst-case” notions of robust optimal control. DEWEY : 629.8 ISSN : 002-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] PCCI control authority of a modern diesel engine outfitted with flexible intake valve actuation / Kulkarni, Anup M. in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 15 p.
Titre : PCCI control authority of a modern diesel engine outfitted with flexible intake valve actuation Type de document : texte imprimé Auteurs : Kulkarni, Anup M., Auteur ; Karla C. Stricker, Auteur ; Angeline Blum, Auteur Année de publication : 2010 Article en page(s) : 15 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Diesel engines Exhaust systems Fuel systems Ignition Rails Valves Index. décimale : 629.8 Résumé : Premixed charge compression ignition (PCCI), an advanced mode combustion strategy, promises to simultaneously deliver the fuel efficiency of diesel combustion and the ultralow NOx emissions that usually require advanced exhaust aftertreatment. A flexible, computationally efficient, and whole engine simulation model for a 2007 6.7 l diesel engine with exhaust gas recirculation (EGR), variable geometry turbocharging (VGT), and common rail fuel injection was validated after extensive experimentation. This model was used to develop strategies for highly fuel-efficient and ultralow NOx emission PCCI. The primary aim of this modeling investigation is to determine the PCCI control authority present on a modern diesel engine outfitted with both conventional actuators (multipulse fuel injectors, EGR valve, and VGT) and flexible intake valve closure modulation, which dictates the effective compression ratio. The results indicate that early fuel injection coupled with ECR reduction and modest amounts of EGR yield a well-timed PCCI exhibiting 70%+ reductions in NOx with no fuel consumption penalty over a significant portion of the engine operating range. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] PCCI control authority of a modern diesel engine outfitted with flexible intake valve actuation [texte imprimé] / Kulkarni, Anup M., Auteur ; Karla C. Stricker, Auteur ; Angeline Blum, Auteur . - 2010 . - 15 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 15 p.
Mots-clés : Diesel engines Exhaust systems Fuel systems Ignition Rails Valves Index. décimale : 629.8 Résumé : Premixed charge compression ignition (PCCI), an advanced mode combustion strategy, promises to simultaneously deliver the fuel efficiency of diesel combustion and the ultralow NOx emissions that usually require advanced exhaust aftertreatment. A flexible, computationally efficient, and whole engine simulation model for a 2007 6.7 l diesel engine with exhaust gas recirculation (EGR), variable geometry turbocharging (VGT), and common rail fuel injection was validated after extensive experimentation. This model was used to develop strategies for highly fuel-efficient and ultralow NOx emission PCCI. The primary aim of this modeling investigation is to determine the PCCI control authority present on a modern diesel engine outfitted with both conventional actuators (multipulse fuel injectors, EGR valve, and VGT) and flexible intake valve closure modulation, which dictates the effective compression ratio. The results indicate that early fuel injection coupled with ECR reduction and modest amounts of EGR yield a well-timed PCCI exhibiting 70%+ reductions in NOx with no fuel consumption penalty over a significant portion of the engine operating range. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Polynomial chaos based design of robust input shapers / Singh, Tarunraj in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 13 p.
Titre : Polynomial chaos based design of robust input shapers Type de document : texte imprimé Auteurs : Singh, Tarunraj, Auteur ; Puneet Singla, Auteur ; Umamaheswara Konda, Auteur Année de publication : 2010 Article en page(s) : 13 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Chaos Delay filters Design engineering Optimisation Polynomial approximation Probability Springs (mechanical) Index. décimale : 629.8 Résumé : A probabilistic approach, which exploits the domain and distribution of the uncertain model parameters, has been developed for the design of robust input shapers. Polynomial chaos expansions are used to approximate uncertain system states and cost functions in the stochastic space. Residual energy of the system is used as the cost function to design robust input shapers for precise rest-to-rest maneuvers. An optimization problem, which minimizes any moment or combination of moments of the distribution function of the residual energy is formulated. Numerical examples are used to illustrate the benefit of using the polynomial chaos based probabilistic approach for the determination of robust input shapers for uncertain linear systems. The solution of polynomial chaos based approach is compared with the minimax optimization based robust input shaper design approach, which emulates a Monte Carlo process. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Polynomial chaos based design of robust input shapers [texte imprimé] / Singh, Tarunraj, Auteur ; Puneet Singla, Auteur ; Umamaheswara Konda, Auteur . - 2010 . - 13 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 13 p.
Mots-clés : Chaos Delay filters Design engineering Optimisation Polynomial approximation Probability Springs (mechanical) Index. décimale : 629.8 Résumé : A probabilistic approach, which exploits the domain and distribution of the uncertain model parameters, has been developed for the design of robust input shapers. Polynomial chaos expansions are used to approximate uncertain system states and cost functions in the stochastic space. Residual energy of the system is used as the cost function to design robust input shapers for precise rest-to-rest maneuvers. An optimization problem, which minimizes any moment or combination of moments of the distribution function of the residual energy is formulated. Numerical examples are used to illustrate the benefit of using the polynomial chaos based probabilistic approach for the determination of robust input shapers for uncertain linear systems. The solution of polynomial chaos based approach is compared with the minimax optimization based robust input shaper design approach, which emulates a Monte Carlo process. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Robust impedance control of manipulators carrying a heavy payload / Aghili, Farhad in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010)
Titre : Robust impedance control of manipulators carrying a heavy payload Type de document : texte imprimé Auteurs : Aghili, Farhad, Auteur Année de publication : 2010 Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Force sensors Manipulator dynamics Robust control Stability Index. décimale : 629.8 Résumé : A heavy payload attached to the wrist force/moment (F/M) sensor of a manipulator can cause the conventional impedance controller to fail in establishing the desired impedance due to the noncontact components of the force measurement, i.e., the inertial and gravitational forces of the payload. This paper proposes an impedance control scheme for such a manipulator to accurately shape its force-response without needing any acceleration measurement. Therefore, no wrist accelerometer or a dynamic estimator for compensating the inertial load forces is required. The impedance controller is further developed using an inner/outer loop feedback approach that not only overcomes the robot dynamics uncertainty, but also allows the specification of the target impedance model in a general form, e.g., a nonlinear model. The stability and convergence of the impedance controller are analytically investigated, and the results show that the control input remains bounded provided that the desired inertia is selected to be different from the payload inertia. Experimental results demonstrate that the proposed impedance controller is able to accurately shape the impedance of a manipulator carrying a relatively heavy load according to the desired impedance model. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Robust impedance control of manipulators carrying a heavy payload [texte imprimé] / Aghili, Farhad, Auteur . - 2010.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010)
Mots-clés : Force sensors Manipulator dynamics Robust control Stability Index. décimale : 629.8 Résumé : A heavy payload attached to the wrist force/moment (F/M) sensor of a manipulator can cause the conventional impedance controller to fail in establishing the desired impedance due to the noncontact components of the force measurement, i.e., the inertial and gravitational forces of the payload. This paper proposes an impedance control scheme for such a manipulator to accurately shape its force-response without needing any acceleration measurement. Therefore, no wrist accelerometer or a dynamic estimator for compensating the inertial load forces is required. The impedance controller is further developed using an inner/outer loop feedback approach that not only overcomes the robot dynamics uncertainty, but also allows the specification of the target impedance model in a general form, e.g., a nonlinear model. The stability and convergence of the impedance controller are analytically investigated, and the results show that the control input remains bounded provided that the desired inertia is selected to be different from the payload inertia. Experimental results demonstrate that the proposed impedance controller is able to accurately shape the impedance of a manipulator carrying a relatively heavy load according to the desired impedance model. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Parameter uncertainty modeling using the multidimensional principal curves / Sepasi, M. in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 07 p.
Titre : Parameter uncertainty modeling using the multidimensional principal curves Type de document : texte imprimé Auteurs : Sepasi, M., Auteur ; Sassani, F., Auteur ; Nagamune, R., Auteur Année de publication : 2010 Article en page(s) : 07 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Parameter uncertainty modeling Nonlinear principal component analysis Parameter variation Multidimensional principal curve Index. décimale : 629.8 Résumé : This paper proposes a technique to model uncertainties associated with linear time-invariant systems. It is assumed that the uncertainties are only due to parametric variations caused by independent uncertain variables. By assuming that a set of a finite number of rational transfer functions of a fixed order is given, as well as the number of independent uncertain variables that affect the parametric uncertainties, the proposed technique seeks an optimal parametric uncertainty model as a function of uncertain variables that explains the set of transfer functions. Finding such an optimal parametric uncertainty model is formulated as a noncovex optimization problem, which is then solved by a combination of a linear matrix inequality and a nonlinear optimization technique. To find an initial condition for solving this nonconvex problem, the nonlinear principal component analysis based on the multidimensional principal curve is employed. The effectiveness of the proposed technique is verified through both illustrative and practical examples. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Parameter uncertainty modeling using the multidimensional principal curves [texte imprimé] / Sepasi, M., Auteur ; Sassani, F., Auteur ; Nagamune, R., Auteur . - 2010 . - 07 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 07 p.
Mots-clés : Parameter uncertainty modeling Nonlinear principal component analysis Parameter variation Multidimensional principal curve Index. décimale : 629.8 Résumé : This paper proposes a technique to model uncertainties associated with linear time-invariant systems. It is assumed that the uncertainties are only due to parametric variations caused by independent uncertain variables. By assuming that a set of a finite number of rational transfer functions of a fixed order is given, as well as the number of independent uncertain variables that affect the parametric uncertainties, the proposed technique seeks an optimal parametric uncertainty model as a function of uncertain variables that explains the set of transfer functions. Finding such an optimal parametric uncertainty model is formulated as a noncovex optimization problem, which is then solved by a combination of a linear matrix inequality and a nonlinear optimization technique. To find an initial condition for solving this nonconvex problem, the nonlinear principal component analysis based on the multidimensional principal curve is employed. The effectiveness of the proposed technique is verified through both illustrative and practical examples. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Combined controller for test system of high capacity hydraulic pump / Wenjun Meng in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 07 p.
Titre : Combined controller for test system of high capacity hydraulic pump Type de document : texte imprimé Auteurs : Wenjun Meng, Auteur ; Jeffrey C. Suhling, Auteur Année de publication : 2010 Article en page(s) : 07 p. Note générale : Systèmes dynamique Langues : Anglais (eng) Mots-clés : Neural network controller Contact task control Passivity based control High capacity hydraulic pump Test Frequency changing Index. décimale : 629.8 Résumé : A combined controller (CT-PBC) by contact task control (CTC) with passivity based controller (PBC) is introduced to control test system of high capacity hydraulic pump (HCHP) to measure its properties. It is compared with a vector controller; a torque feedback based combined controller, and two neural network controllers. The results gained from comparing and analyzing these controllers show that under different outlet pressures of HCHP, CT-PBC has good stability and robustness, which meet the requirements to test HCHP. CT-PBC is also simpler and better than other controllers in general. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Combined controller for test system of high capacity hydraulic pump [texte imprimé] / Wenjun Meng, Auteur ; Jeffrey C. Suhling, Auteur . - 2010 . - 07 p.
Systèmes dynamique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 07 p.
Mots-clés : Neural network controller Contact task control Passivity based control High capacity hydraulic pump Test Frequency changing Index. décimale : 629.8 Résumé : A combined controller (CT-PBC) by contact task control (CTC) with passivity based controller (PBC) is introduced to control test system of high capacity hydraulic pump (HCHP) to measure its properties. It is compared with a vector controller; a torque feedback based combined controller, and two neural network controllers. The results gained from comparing and analyzing these controllers show that under different outlet pressures of HCHP, CT-PBC has good stability and robustness, which meet the requirements to test HCHP. CT-PBC is also simpler and better than other controllers in general. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Mechatronic model and experimental validation of a pneumatic servo-solenoid valve / Sorli, Massimo in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 10 p.
Titre : Mechatronic model and experimental validation of a pneumatic servo-solenoid valve Type de document : texte imprimé Auteurs : Sorli, Massimo, Auteur ; Giorgio Figliolini, Auteur ; Andrea Almondo, Auteur Année de publication : 2010 Article en page(s) : 10 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Pneumatics Proportional valves Solenoid Mechatronic model Experimental analysis Index. décimale : 629.8 Résumé : This paper deals with a method for static and dynamic modeling of a three-way pneumatic proportional valve actuated by means of a proportional solenoid, which can be applied in robust design, condition monitoring, and development of advanced control strategies. Test-beds for the experimental identification of the main physical parameters of the valve are described along with the proposed experimental methods. A mechatronic dynamic model of the valve is then presented, which considers the servo-solenoid as the electromagnetic subsystem, the moving parts of the valve as the mechanical subsystem, and the fluid parts for flow-rate control as the pneumatic subsystem. Finally, the proposed mechatronic dynamic model is validated by comparing the experimental and simulated diagrams for adsorbed current, spool position, and instantaneous flow-rate. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Mechatronic model and experimental validation of a pneumatic servo-solenoid valve [texte imprimé] / Sorli, Massimo, Auteur ; Giorgio Figliolini, Auteur ; Andrea Almondo, Auteur . - 2010 . - 10 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 10 p.
Mots-clés : Pneumatics Proportional valves Solenoid Mechatronic model Experimental analysis Index. décimale : 629.8 Résumé : This paper deals with a method for static and dynamic modeling of a three-way pneumatic proportional valve actuated by means of a proportional solenoid, which can be applied in robust design, condition monitoring, and development of advanced control strategies. Test-beds for the experimental identification of the main physical parameters of the valve are described along with the proposed experimental methods. A mechatronic dynamic model of the valve is then presented, which considers the servo-solenoid as the electromagnetic subsystem, the moving parts of the valve as the mechanical subsystem, and the fluid parts for flow-rate control as the pneumatic subsystem. Finally, the proposed mechatronic dynamic model is validated by comparing the experimental and simulated diagrams for adsorbed current, spool position, and instantaneous flow-rate. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Delay dependent robust stabilization for systems with uncertain time varying delays / El Houssaine Tissir in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 07 p.
Titre : Delay dependent robust stabilization for systems with uncertain time varying delays Type de document : texte imprimé Auteurs : El Houssaine Tissir, Auteur Année de publication : 2010 Article en page(s) : 07 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Delay dependent stability Robust stabilization Linear matrix inequalities Time varying delays Index. décimale : 629.8 Résumé : Sufficient and improved stability robustness conditions that depend both on the size and time derivative of time varying delays are presented. The approach is applied to investigate the problem of finding memoryless state feedback control that simultaneously stabilizes the uncertain system and guarantees an upper bound for some performance index. The perturbations are unknown but norm bounded. The results are derived via Lyapunov– Krasovskii functional and are expressed in terms of linear matrix inequalities. Numerical computations are performed to illustrate the feasibility and the improvements of the results with respect to previous works. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Delay dependent robust stabilization for systems with uncertain time varying delays [texte imprimé] / El Houssaine Tissir, Auteur . - 2010 . - 07 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 07 p.
Mots-clés : Delay dependent stability Robust stabilization Linear matrix inequalities Time varying delays Index. décimale : 629.8 Résumé : Sufficient and improved stability robustness conditions that depend both on the size and time derivative of time varying delays are presented. The approach is applied to investigate the problem of finding memoryless state feedback control that simultaneously stabilizes the uncertain system and guarantees an upper bound for some performance index. The perturbations are unknown but norm bounded. The results are derived via Lyapunov– Krasovskii functional and are expressed in terms of linear matrix inequalities. Numerical computations are performed to illustrate the feasibility and the improvements of the results with respect to previous works. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] Quantitative fault tolerant control design for a leaking hydraulic actuator / Mark Karpenko in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 5 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 07 p.
Titre : Quantitative fault tolerant control design for a leaking hydraulic actuator Type de document : texte imprimé Auteurs : Mark Karpenko, Auteur ; Sepehri, Nariman, Auteur Année de publication : 2010 Article en page(s) : 07 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Closed loop systems Control system synthesis Controllers Fault tolerance Feedback Fourier transforms Gain control Hydraulic actuators Position control Robust control Index. décimale : 629.8 Résumé : This paper documents the design of a low-order, fixed-gain, controller that can maintain the positioning performance of an electrohydraulic actuator operating under variable load with a leaking piston seal. A set of linear time-invariant equivalent models of the faulty hydraulic actuator is first established, in the frequency domain, by Fourier transformation of acceptable actuator input-output responses. Then, a robust position control law is synthesized by quantitative feedback theory to meet the prescribed design tolerances on closed-loop stability and reference tracking. The designed fault tolerant controller uses only actuator position as feedback, yet it can accommodate nonlinearities in the hydraulic functions, maintain robustness against typical parametric uncertainties, and maintain the closed-loop performance despite a leakage fault that can bypass up to 40% of the rated servovalve flow across the actuator piston. To demonstrate the utility of the fault tolerant control approach in a realistic application, the experimental fault tolerant hydraulic system is operated as a flight surface actuator in the hardware-in-the-loop simulation of a high-performance jet aircraft. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Quantitative fault tolerant control design for a leaking hydraulic actuator [texte imprimé] / Mark Karpenko, Auteur ; Sepehri, Nariman, Auteur . - 2010 . - 07 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 5 (Septembre 2010) . - 07 p.
Mots-clés : Closed loop systems Control system synthesis Controllers Fault tolerance Feedback Fourier transforms Gain control Hydraulic actuators Position control Robust control Index. décimale : 629.8 Résumé : This paper documents the design of a low-order, fixed-gain, controller that can maintain the positioning performance of an electrohydraulic actuator operating under variable load with a leaking piston seal. A set of linear time-invariant equivalent models of the faulty hydraulic actuator is first established, in the frequency domain, by Fourier transformation of acceptable actuator input-output responses. Then, a robust position control law is synthesized by quantitative feedback theory to meet the prescribed design tolerances on closed-loop stability and reference tracking. The designed fault tolerant controller uses only actuator position as feedback, yet it can accommodate nonlinearities in the hydraulic functions, maintain robustness against typical parametric uncertainties, and maintain the closed-loop performance despite a leakage fault that can bypass up to 40% of the rated servovalve flow across the actuator piston. To demonstrate the utility of the fault tolerant control approach in a realistic application, the experimental fault tolerant hydraulic system is operated as a flight surface actuator in the hardware-in-the-loop simulation of a high-performance jet aircraft. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...]
Exemplaires
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
aucun exemplaire |