Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Journal of engineering mechanics / Sackman, Jerome L. . Vol. 136 N° 12Journal of engineering mechanicsMention de date : Décembre 2010 Paru le : 02/02/2011 |
Dépouillements
Ajouter le résultat dans votre panierCharacterization of wireless smart sensor performance / Laurent E. Linderman in Journal of engineering mechanics, Vol. 136 N° 12 (Décembre 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1435-1443
Titre : Characterization of wireless smart sensor performance Type de document : texte imprimé Auteurs : Laurent E. Linderman, Auteur ; J. A. Rice, Auteur ; Suhail Barot, Auteur Année de publication : 2011 Article en page(s) : pp.1435-1443 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Probe instruments Antennas Monitoring Communication Structural reliability. Résumé : A critical aspect of using wireless sensors for structural health monitoring is communication performance. Unlike wired systems, data transfer is less reliable between wireless sensor nodes owing to data loss. While reliable communication protocols are typically used to reduce data loss, this increase in communication can drain already limited power resources. This paper provides an experimental investigation of the wireless communication characteristics of the Imote2 smart sensor platform; the presentation is tailored toward the end user, e.g., application engineers and researchers. Following a qualitative discussion of wireless communication and packet delivery, a quantitative characterization of wireless communication capabilities of the Imote2 platform, including an assessment of onboard and external antenna performance, is provided. Herein, the external antenna was found to significantly outperform the onboard antenna in both transmission and reception reliability. However, the built environment, including building materials and other wireless networks, can significantly reduce reception rate and thus increase packet loss. Finally, implications of these results for a full-scale implementation are presented. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1435_s1?isAuthorized=no [article] Characterization of wireless smart sensor performance [texte imprimé] / Laurent E. Linderman, Auteur ; J. A. Rice, Auteur ; Suhail Barot, Auteur . - 2011 . - pp.1435-1443.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1435-1443
Mots-clés : Probe instruments Antennas Monitoring Communication Structural reliability. Résumé : A critical aspect of using wireless sensors for structural health monitoring is communication performance. Unlike wired systems, data transfer is less reliable between wireless sensor nodes owing to data loss. While reliable communication protocols are typically used to reduce data loss, this increase in communication can drain already limited power resources. This paper provides an experimental investigation of the wireless communication characteristics of the Imote2 smart sensor platform; the presentation is tailored toward the end user, e.g., application engineers and researchers. Following a qualitative discussion of wireless communication and packet delivery, a quantitative characterization of wireless communication capabilities of the Imote2 platform, including an assessment of onboard and external antenna performance, is provided. Herein, the external antenna was found to significantly outperform the onboard antenna in both transmission and reception reliability. However, the built environment, including building materials and other wireless networks, can significantly reduce reception rate and thus increase packet loss. Finally, implications of these results for a full-scale implementation are presented. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1435_s1?isAuthorized=no Effect of hanger flexibility on dynamic response of suspension bridges / José Turmo in Journal of engineering mechanics, Vol. 136 N° 12 (Décembre 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1444-1459
Titre : Effect of hanger flexibility on dynamic response of suspension bridges Type de document : texte imprimé Auteurs : José Turmo, Auteur ; J. Enrique Luco, Auteur Année de publication : 2011 Article en page(s) : pp.1444-1459 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Dynamic loads Bridges suspension Continuum mechanics Vibration. Résumé : Linearized continuum models of a suspended span with unloaded backstays and of a symmetric three-span suspension bridge are used to study the effects of the flexibility of the hangers on the vertical vibrations of suspension bridges. The models include elastic parabolic cables, flexible distributed hangers with variable length, and a stiffening girder represented by an elastic beam. It is shown that the free vibrations of a suspended span with unloaded backstays are controlled by five dimensionless parameters, while six dimensionless parameters control the response of a symmetric three-span suspension bridge. The results indicate that the flexibility of the hangers has a significant effect on the natural frequencies of the higher modes only when the relative stiffness of the girder is very high. The effects of hanger flexibility on the response of a suspension bridge to localized impulsive loads are also found to be small. These findings confirm the traditional, albeit previously untested, assumption of inextensible hangers. Finally, the threshold amplitudes of free vibrations that would result in the incipient slackening of the hangers are determined. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1444_s1?isAuthorized=no [article] Effect of hanger flexibility on dynamic response of suspension bridges [texte imprimé] / José Turmo, Auteur ; J. Enrique Luco, Auteur . - 2011 . - pp.1444-1459.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1444-1459
Mots-clés : Dynamic loads Bridges suspension Continuum mechanics Vibration. Résumé : Linearized continuum models of a suspended span with unloaded backstays and of a symmetric three-span suspension bridge are used to study the effects of the flexibility of the hangers on the vertical vibrations of suspension bridges. The models include elastic parabolic cables, flexible distributed hangers with variable length, and a stiffening girder represented by an elastic beam. It is shown that the free vibrations of a suspended span with unloaded backstays are controlled by five dimensionless parameters, while six dimensionless parameters control the response of a symmetric three-span suspension bridge. The results indicate that the flexibility of the hangers has a significant effect on the natural frequencies of the higher modes only when the relative stiffness of the girder is very high. The effects of hanger flexibility on the response of a suspension bridge to localized impulsive loads are also found to be small. These findings confirm the traditional, albeit previously untested, assumption of inextensible hangers. Finally, the threshold amplitudes of free vibrations that would result in the incipient slackening of the hangers are determined. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1444_s1?isAuthorized=no Reliability-based design using two-stage stochastic optimization with a treatment of model prediction errors / Alexandros A. Taflanidis in Journal of engineering mechanics, Vol. 136 N° 12 (Décembre 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1460-1473
Titre : Reliability-based design using two-stage stochastic optimization with a treatment of model prediction errors Type de document : texte imprimé Auteurs : Alexandros A. Taflanidis, Auteur ; James L. Beck, Auteur Année de publication : 2011 Article en page(s) : pp.1460-1473 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Stochastic models Optimization Simulation System reliability. Résumé : Design problems that involve optimization of the reliability of engineering systems are the focus of this paper. Methodologies are discussed applicable to problems that involve nonlinear systems and a large number of uncertain parameters specifying the system and excitation models. To address the complexity of these problems, stochastic simulation is considered for evaluation of the system reliability. An innovative approach, called stochastic subset optimization (SSO), is discussed for performing a sensitivity analysis with respect to the design variables of the problem as well as the uncertain model parameters. In a small number of iterations, SSO converges to a smaller subset of the original design space that has high plausibility of containing the optimal design variables and that consists of near-optimal designs. For higher accuracy, an appropriate stochastic optimization algorithm may then be used to pinpoint the optimal design variables within this subset. This produces an efficient two-stage framework for optimal reliability design. Topics related to the combination of the two different stages for overall enhanced efficiency are discussed. An example is presented that illustrates the effectiveness of the proposed two-stage methodology for a challenging dynamic reliability problem. Also, a study is performed of the influence on the optimal design decisions of the prediction error of the system model, which is introduced because no model makes perfect predictions of the system response. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1460_s1?isAuthorized=no [article] Reliability-based design using two-stage stochastic optimization with a treatment of model prediction errors [texte imprimé] / Alexandros A. Taflanidis, Auteur ; James L. Beck, Auteur . - 2011 . - pp.1460-1473.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1460-1473
Mots-clés : Stochastic models Optimization Simulation System reliability. Résumé : Design problems that involve optimization of the reliability of engineering systems are the focus of this paper. Methodologies are discussed applicable to problems that involve nonlinear systems and a large number of uncertain parameters specifying the system and excitation models. To address the complexity of these problems, stochastic simulation is considered for evaluation of the system reliability. An innovative approach, called stochastic subset optimization (SSO), is discussed for performing a sensitivity analysis with respect to the design variables of the problem as well as the uncertain model parameters. In a small number of iterations, SSO converges to a smaller subset of the original design space that has high plausibility of containing the optimal design variables and that consists of near-optimal designs. For higher accuracy, an appropriate stochastic optimization algorithm may then be used to pinpoint the optimal design variables within this subset. This produces an efficient two-stage framework for optimal reliability design. Topics related to the combination of the two different stages for overall enhanced efficiency are discussed. An example is presented that illustrates the effectiveness of the proposed two-stage methodology for a challenging dynamic reliability problem. Also, a study is performed of the influence on the optimal design decisions of the prediction error of the system model, which is introduced because no model makes perfect predictions of the system response. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1460_s1?isAuthorized=no Equilibrium-based finite-element formulation for the geometrically exact analysis of planar framed structures / H. A. F. A. Santos in Journal of engineering mechanics, Vol. 136 N° 12 (Décembre 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1474-1490
Titre : Equilibrium-based finite-element formulation for the geometrically exact analysis of planar framed structures Type de document : texte imprimé Auteurs : H. A. F. A. Santos, Auteur ; J. P. Moitinho de Almeida, Auteur Année de publication : 2011 Article en page(s) : pp.1474-1490 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Beams Frames Hybrid methods Finite element method Geometry. Résumé : This paper addresses the development of a hybrid-mixed finite-element formulation for the geometrically exact quasi-static analysis of elastic planar framed structures, modeled using the two-dimensional Reissner beam theory. The proposed formulation relies on a modified principle of complementary energy, which involves, as independent variables, the generalized vectors of stress resultants and displacements and, in addition, a set of Lagrange multipliers used to enforce the stress continuity between elements. The adopted finite-element discretization produces numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the static boundary conditions. It consists, therefore, in a true equilibrium formulation for arbitrarily large displacements and rotations. Furthermore, as it does not suffer from shear locking or any other artificial stiffening phenomena, it may be regarded as an alternative to the standard displacement-based formulation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions are compared with those obtained using the standard two-node displacement-based formulation. Numerical analyses of convergence of the proposed finite-element formulation are also included. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1474_s1?isAuthorized=no [article] Equilibrium-based finite-element formulation for the geometrically exact analysis of planar framed structures [texte imprimé] / H. A. F. A. Santos, Auteur ; J. P. Moitinho de Almeida, Auteur . - 2011 . - pp.1474-1490.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1474-1490
Mots-clés : Beams Frames Hybrid methods Finite element method Geometry. Résumé : This paper addresses the development of a hybrid-mixed finite-element formulation for the geometrically exact quasi-static analysis of elastic planar framed structures, modeled using the two-dimensional Reissner beam theory. The proposed formulation relies on a modified principle of complementary energy, which involves, as independent variables, the generalized vectors of stress resultants and displacements and, in addition, a set of Lagrange multipliers used to enforce the stress continuity between elements. The adopted finite-element discretization produces numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the static boundary conditions. It consists, therefore, in a true equilibrium formulation for arbitrarily large displacements and rotations. Furthermore, as it does not suffer from shear locking or any other artificial stiffening phenomena, it may be regarded as an alternative to the standard displacement-based formulation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions are compared with those obtained using the standard two-node displacement-based formulation. Numerical analyses of convergence of the proposed finite-element formulation are also included. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1474_s1?isAuthorized=no Monte–carlo based method for predicting extreme value statistics of uncertain structures / Nilanjan Saha in Journal of engineering mechanics, Vol. 136 N° 12 (Décembre 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1491-1501
Titre : Monte–carlo based method for predicting extreme value statistics of uncertain structures Type de document : texte imprimé Auteurs : Nilanjan Saha, Auteur ; Arvid Naess, Auteur Année de publication : 2011 Article en page(s) : pp.1491-1501 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Monte Carlo method Uncertainty principles Stochastic processes Finite element method Turbines Predictions Excitation. Résumé : In the present paper, a simple method is proposed for predicting the extreme response of uncertain structures subjected to stochastic excitation. Many of the currently used approaches to extreme response predictions are based on the asymptotic generalized extreme value distribution, whose parameters are estimated from the observed data. However, in most practical situations, it is not easy to ascertain whether the given response time series contain data above a high level that are truly asymptotic, and hence the obtained parameter values by the adopted estimation methods, which points to the appropriate extreme value distribution, may become inconsequential. In this paper, the extreme value statistics are predicted taking advantage of the regularity of the tail region of the mean upcrossing rate function. This method is instrumental in handling combined uncertainties associated with nonergodic processes (system uncertainties) as well as ergodic ones (stochastic loading). For the specific applications considered, it can be assumed that the considered time series has an extreme value distribution that has the Gumbel distribution as its asymptotic limit. The present method is numerically illustrated through applications to a beam with spatially varying random properties and wind turbines subjected to stochastic loading. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1491_s1?isAuthorized=no [article] Monte–carlo based method for predicting extreme value statistics of uncertain structures [texte imprimé] / Nilanjan Saha, Auteur ; Arvid Naess, Auteur . - 2011 . - pp.1491-1501.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1491-1501
Mots-clés : Monte Carlo method Uncertainty principles Stochastic processes Finite element method Turbines Predictions Excitation. Résumé : In the present paper, a simple method is proposed for predicting the extreme response of uncertain structures subjected to stochastic excitation. Many of the currently used approaches to extreme response predictions are based on the asymptotic generalized extreme value distribution, whose parameters are estimated from the observed data. However, in most practical situations, it is not easy to ascertain whether the given response time series contain data above a high level that are truly asymptotic, and hence the obtained parameter values by the adopted estimation methods, which points to the appropriate extreme value distribution, may become inconsequential. In this paper, the extreme value statistics are predicted taking advantage of the regularity of the tail region of the mean upcrossing rate function. This method is instrumental in handling combined uncertainties associated with nonergodic processes (system uncertainties) as well as ergodic ones (stochastic loading). For the specific applications considered, it can be assumed that the considered time series has an extreme value distribution that has the Gumbel distribution as its asymptotic limit. The present method is numerically illustrated through applications to a beam with spatially varying random properties and wind turbines subjected to stochastic loading. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1491_s1?isAuthorized=no Application of exponential-based methods in integrating the constitutive equations with multicomponent nonlinear kinematic hardening / M. Rezaiee-Pajand in Journal of engineering mechanics, Vol. 136 N° 12 (Décembre 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1502-1518
Titre : Application of exponential-based methods in integrating the constitutive equations with multicomponent nonlinear kinematic hardening Type de document : texte imprimé Auteurs : M. Rezaiee-Pajand, Auteur ; Cyrus Nasirai, Auteur ; Mehrzad Sharifian, Auteur Année de publication : 2011 Article en page(s) : pp.1502-1518 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Kinematics Plasticity Constitutive models Load factors Algorithms. Résumé : The von-Mises plasticity model, in the small strain regime, along with a class of multicomponent nonlinear kinematic hardening rules is considered. The material is assumed to be stabilized after several load cycles and therefore, isotropic hardening will not be accounted for. Application of exponential-based methods in integrating plasticity equations is provided, which is based on defining an augmented stress vector and using exponential maps to solve a system of quasi-linear differential equations. The solutions obtained by this new technique give very accurate updated stress values that are consistent with the yield surface. The classical forward Euler method is reformulated in details and applied to the multicomponent form of the nonlinear kinematic hardening in order to provide a comparison for the suggested technique. Moreover, a consistent tangent operator for the exponential-based integration strategy and also for the classical forward Euler algorithm is presented. In order to show the robustness and performance of the proposed formulation, an extensive numerical investigation is carried out. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1502_s1?isAuthorized=no [article] Application of exponential-based methods in integrating the constitutive equations with multicomponent nonlinear kinematic hardening [texte imprimé] / M. Rezaiee-Pajand, Auteur ; Cyrus Nasirai, Auteur ; Mehrzad Sharifian, Auteur . - 2011 . - pp.1502-1518.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1502-1518
Mots-clés : Kinematics Plasticity Constitutive models Load factors Algorithms. Résumé : The von-Mises plasticity model, in the small strain regime, along with a class of multicomponent nonlinear kinematic hardening rules is considered. The material is assumed to be stabilized after several load cycles and therefore, isotropic hardening will not be accounted for. Application of exponential-based methods in integrating plasticity equations is provided, which is based on defining an augmented stress vector and using exponential maps to solve a system of quasi-linear differential equations. The solutions obtained by this new technique give very accurate updated stress values that are consistent with the yield surface. The classical forward Euler method is reformulated in details and applied to the multicomponent form of the nonlinear kinematic hardening in order to provide a comparison for the suggested technique. Moreover, a consistent tangent operator for the exponential-based integration strategy and also for the classical forward Euler algorithm is presented. In order to show the robustness and performance of the proposed formulation, an extensive numerical investigation is carried out. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1502_s1?isAuthorized=no Performance of a nongasketed flange joint under combined internal pressure and bending loading / Muhammad Abid in Journal of engineering mechanics, Vol. 136 N° 12 (Décembre 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1519-1527
Titre : Performance of a nongasketed flange joint under combined internal pressure and bending loading Type de document : texte imprimé Auteurs : Muhammad Abid, Auteur ; Abdul Waheed Awan, Auteur ; David H. Nash, Auteur Année de publication : 2011 Article en page(s) : pp.1519-1527 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Bolts Bending Sealing Internal pressure. Résumé : Performance of a bolted flange joint is characterized mainly due to its “strength” and “sealing capability.” A number of analytical and experimental studies have been conducted to study these characteristics only under internal pressure loading. A very limited amount of work is found in the literature under combined internal pressure and bending loading. Due to the ignorance of this external loading, i.e., bending loading, the optimized performance of the bolted flange joint cannot be achieved. The present design codes do not address the effects of bending loading on the structural integrity and sealing ability. To investigate joint strength and sealing capability under combined loading, an extensive comparative experimental and numerical study of a nongasketed flange joint is carried out and overall joint performance and behavior is discussed. Actual joint load capacity is determined under both the design and proof test pressure with maximum additional external bending loading that can be applied for safe joint performance. In addition, as experimentally it is impossible to test different flange joint sizes under combined loading application, hence finite element model developed and verified with the experimental results, presented in this paper can be used as base to study the behavior for different nongasketed flange joint sizes for different classes under combined pressure and bending loading. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1519_s1?isAuthorized=no [article] Performance of a nongasketed flange joint under combined internal pressure and bending loading [texte imprimé] / Muhammad Abid, Auteur ; Abdul Waheed Awan, Auteur ; David H. Nash, Auteur . - 2011 . - pp.1519-1527.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1519-1527
Mots-clés : Bolts Bending Sealing Internal pressure. Résumé : Performance of a bolted flange joint is characterized mainly due to its “strength” and “sealing capability.” A number of analytical and experimental studies have been conducted to study these characteristics only under internal pressure loading. A very limited amount of work is found in the literature under combined internal pressure and bending loading. Due to the ignorance of this external loading, i.e., bending loading, the optimized performance of the bolted flange joint cannot be achieved. The present design codes do not address the effects of bending loading on the structural integrity and sealing ability. To investigate joint strength and sealing capability under combined loading, an extensive comparative experimental and numerical study of a nongasketed flange joint is carried out and overall joint performance and behavior is discussed. Actual joint load capacity is determined under both the design and proof test pressure with maximum additional external bending loading that can be applied for safe joint performance. In addition, as experimentally it is impossible to test different flange joint sizes under combined loading application, hence finite element model developed and verified with the experimental results, presented in this paper can be used as base to study the behavior for different nongasketed flange joint sizes for different classes under combined pressure and bending loading. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1519_s1?isAuthorized=no Static stability formulas of a weakened timoshenko column / David G. Zapata-Medina in Journal of engineering mechanics, Vol. 136 N° 12 (Décembre 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1528-1536
Titre : Static stability formulas of a weakened timoshenko column : effects of shear deformations Type de document : texte imprimé Auteurs : David G. Zapata-Medina, Auteur ; Luis G. Arboleda-Monsalve, Auteur ; J. Dario Aristizabal-Ochoa, Auteur Année de publication : 2011 Article en page(s) : pp.1528-1536 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Columns Cracking Structural stability Buckling Shear deformation. Résumé : The static stability analysis of two-dimensional Timoshenko columns weakened at an arbitrary section is derived in a classic manner. The effects of shear deformations along the column, influenced by the additional shear force induced by the applied axial load as the member deforms according to the modified shear equation proposed by Haringx, are presented and studied in detail. The proposed model also captures: (1) the influence on the buckling load capacity of the column when an arbitrary weakened section is formed at any location; (2) the tension buckling phenomenon due to the low shear stiffness of columns made of composite materials or elastomeric rubbers; and (3) the beneficial effects of an additional lateral bracing located at the weakened section to alleviate the buckling load reduction of the column. Seven classical and nonclassical cases of columns mostly used in civil and mechanical engineering are summarized in condensed formulas which allow the straightforward determination of buckling loads and shapes. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1528_s1?isAuthorized=no [article] Static stability formulas of a weakened timoshenko column : effects of shear deformations [texte imprimé] / David G. Zapata-Medina, Auteur ; Luis G. Arboleda-Monsalve, Auteur ; J. Dario Aristizabal-Ochoa, Auteur . - 2011 . - pp.1528-1536.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 12 (Décembre 2010) . - pp.1528-1536
Mots-clés : Columns Cracking Structural stability Buckling Shear deformation. Résumé : The static stability analysis of two-dimensional Timoshenko columns weakened at an arbitrary section is derived in a classic manner. The effects of shear deformations along the column, influenced by the additional shear force induced by the applied axial load as the member deforms according to the modified shear equation proposed by Haringx, are presented and studied in detail. The proposed model also captures: (1) the influence on the buckling load capacity of the column when an arbitrary weakened section is formed at any location; (2) the tension buckling phenomenon due to the low shear stiffness of columns made of composite materials or elastomeric rubbers; and (3) the beneficial effects of an additional lateral bracing located at the weakened section to alleviate the buckling load reduction of the column. Seven classical and nonclassical cases of columns mostly used in civil and mechanical engineering are summarized in condensed formulas which allow the straightforward determination of buckling loads and shapes. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v136/i12/p1528_s1?isAuthorized=no
Exemplaires
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
aucun exemplaire |