Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Transactions of the ASME . Journal of engineering for gas turbines and power / Wennerstrom, Arthur J. . Vol. 133 N° 2Journal of engineering for gas turbines and powerMention de date : Fevrier 2011 Paru le : 12/02/2012 |
Dépouillements
Ajouter le résultat dans votre panierDesign parameters for an aircraft engine exit plane particle sampling system / Hsi-Wu Wong in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 15 p.
Titre : Design parameters for an aircraft engine exit plane particle sampling system Type de document : texte imprimé Auteurs : Hsi-Wu Wong, Auteur ; Zhenhong Yu, Auteur ; Michael T. Timko, Auteur Année de publication : 2012 Article en page(s) : 15 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Aerospace engines Air pollution measurement Design engineering Gas turbines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The experimental data and numerical modeling were utilized to investigate the effects of exhaust sampling parameters on the measurements of particulate matter (PM) emitted at the exit plane of gas-turbine engines. The results provide guidance for sampling system design and operation. Engine power level is the most critical factor that influences the size and quantity of black carbon soot particles emitted from gas-turbine engines and must be considered in sampling system design. The results of this investigation indicate that the available soot surface area significantly affects the amount of volatile gases that can condense onto soot particles. During exhaust particle measurements, a dilution gas is typically added to the sampled exhaust stream to suppress volatile particle formation in the sampling line. Modeling results indicate that the dilution gas should be introduced upstream before a critical location in the sampling line that corresponds to the onset of particle formation microphysics. Also, the dilution gas should be dry for maximum nucleation suppression. In most aircraft PM emissions measurements, the probe-rake systems are water cooled and the sampling line may be heated. Modeling results suggest that the water cooling of the probe tip should be limited to avoid overcooling the sampling line wall temperature and, thus, minimize additional particle formation in the sampling line. The experimental data show that heating the sampling lines will decrease black carbon and sulfate PM mass and increase organic PM mass reaching the instruments. Sampling line transmission losses may prevent some of the particles emitted at the engine exit plane from reaching the instruments, especially particles that are smaller in size. Modeling results suggest that homogeneous nucleation can occur in the engine exit plane sampling line. If newly nucleated particles, typically smaller than 10 nm, are indeed formed in the sampling line, sampling line particle losses provide a possible explanation, in addition to the application of dry diluent, that they are generally not observed in the PM emissions measurements. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Design parameters for an aircraft engine exit plane particle sampling system [texte imprimé] / Hsi-Wu Wong, Auteur ; Zhenhong Yu, Auteur ; Michael T. Timko, Auteur . - 2012 . - 15 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 15 p.
Mots-clés : Aerospace engines Air pollution measurement Design engineering Gas turbines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The experimental data and numerical modeling were utilized to investigate the effects of exhaust sampling parameters on the measurements of particulate matter (PM) emitted at the exit plane of gas-turbine engines. The results provide guidance for sampling system design and operation. Engine power level is the most critical factor that influences the size and quantity of black carbon soot particles emitted from gas-turbine engines and must be considered in sampling system design. The results of this investigation indicate that the available soot surface area significantly affects the amount of volatile gases that can condense onto soot particles. During exhaust particle measurements, a dilution gas is typically added to the sampled exhaust stream to suppress volatile particle formation in the sampling line. Modeling results indicate that the dilution gas should be introduced upstream before a critical location in the sampling line that corresponds to the onset of particle formation microphysics. Also, the dilution gas should be dry for maximum nucleation suppression. In most aircraft PM emissions measurements, the probe-rake systems are water cooled and the sampling line may be heated. Modeling results suggest that the water cooling of the probe tip should be limited to avoid overcooling the sampling line wall temperature and, thus, minimize additional particle formation in the sampling line. The experimental data show that heating the sampling lines will decrease black carbon and sulfate PM mass and increase organic PM mass reaching the instruments. Sampling line transmission losses may prevent some of the particles emitted at the engine exit plane from reaching the instruments, especially particles that are smaller in size. Modeling results suggest that homogeneous nucleation can occur in the engine exit plane sampling line. If newly nucleated particles, typically smaller than 10 nm, are indeed formed in the sampling line, sampling line particle losses provide a possible explanation, in addition to the application of dry diluent, that they are generally not observed in the PM emissions measurements. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Experimental investigation of the nonlinear response of swirl-stabilized flames to equivalence ratio oscillations / Kyu Tae Kim in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 08 p.
Titre : Experimental investigation of the nonlinear response of swirl-stabilized flames to equivalence ratio oscillations Type de document : texte imprimé Auteurs : Kyu Tae Kim, Auteur ; Jong Guen Lee, Auteur ; Bryan D. Quay, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Flames Fluid oscillations Gas turbines Swirling flow Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The nonlinear response of a swirl-stabilized flame to equivalence ratio oscillations was experimentally investigated in an atmospheric-pressure, high-temperature, lean-premixed model gas turbine combustor. To generate high-amplitude equivalence ratio oscillations, fuel was modulated using a siren-type modulating device. The mixture ratio oscillations at the inlet of the combustion chamber were measured by the infrared absorption technique, and the flame's response, i.e., the fluctuation in the flame's rate of heat release, was estimated by CH* chemiluminescence emission intensity. Phase-resolved CH* chemiluminescence images were taken to characterize the dynamic response of the flame. Results show that the amplitude and frequency dependence of the flame's response to equivalence ratio oscillations is qualitatively consistent with the flame's response to inlet velocity oscillations. The underlying physics of the nonlinear response of the flame to equivalence ratio oscillations, however, is associated with the intrinsically nonlinear dependence of the heat of reaction and burning velocity on the equivalence ratio. It was found that combustion cannot be sustained under conditions of high-amplitude equivalence ratio oscillations. Lean blowoff occurs when the normalized amplitude of the equivalence ratio oscillation exceeds a threshold value. The threshold value is dependent on the mean equivalence ratio and modulation frequency. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Experimental investigation of the nonlinear response of swirl-stabilized flames to equivalence ratio oscillations [texte imprimé] / Kyu Tae Kim, Auteur ; Jong Guen Lee, Auteur ; Bryan D. Quay, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 08 p.
Mots-clés : Flames Fluid oscillations Gas turbines Swirling flow Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The nonlinear response of a swirl-stabilized flame to equivalence ratio oscillations was experimentally investigated in an atmospheric-pressure, high-temperature, lean-premixed model gas turbine combustor. To generate high-amplitude equivalence ratio oscillations, fuel was modulated using a siren-type modulating device. The mixture ratio oscillations at the inlet of the combustion chamber were measured by the infrared absorption technique, and the flame's response, i.e., the fluctuation in the flame's rate of heat release, was estimated by CH* chemiluminescence emission intensity. Phase-resolved CH* chemiluminescence images were taken to characterize the dynamic response of the flame. Results show that the amplitude and frequency dependence of the flame's response to equivalence ratio oscillations is qualitatively consistent with the flame's response to inlet velocity oscillations. The underlying physics of the nonlinear response of the flame to equivalence ratio oscillations, however, is associated with the intrinsically nonlinear dependence of the heat of reaction and burning velocity on the equivalence ratio. It was found that combustion cannot be sustained under conditions of high-amplitude equivalence ratio oscillations. Lean blowoff occurs when the normalized amplitude of the equivalence ratio oscillation exceeds a threshold value. The threshold value is dependent on the mean equivalence ratio and modulation frequency. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Flame response mechanisms due to velocity perturbations in a lean premixed gas turbine combustor / Brian Jones in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 09 p.
Titre : Flame response mechanisms due to velocity perturbations in a lean premixed gas turbine combustor Type de document : texte imprimé Auteurs : Brian Jones, Auteur ; Jong Guen Lee, Auteur ; Bryan D. Quay, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combustion Flames Flow visualisation Gas turbines Transfer functions Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The response of turbulent premixed flames to inlet velocity fluctuations is studied experimentally in a lean premixed, swirl-stabilized, gas turbine combustor. Overall chemiluminescence intensity is used as a measure of the fluctuations in the flame's global heat release rate, and hot wire anemometry is used to measure the inlet velocity fluctuations. Tests are conducted over a range of mean inlet velocities, equivalence ratios, and velocity fluctuation frequencies, while the normalized inlet velocity fluctuation (V[prime]/Vmean) is fixed at 5% to ensure linear flame response over the employed modulation frequency range. The measurements are used to calculate a flame transfer function relating the velocity fluctuation to the heat release fluctuation as a function of the velocity fluctuation frequency. At low frequency, the gain of the flame transfer function increases with increasing frequency to a peak value greater than 1. As the frequency is further increased, the gain decreases to a minimum value, followed by a second smaller peak. The frequencies at which the gain is minimum and achieves its second peak are found to depend on the convection time scale and the flame's characteristic length scale. Phase-synchronized CH* chemiluminescence imaging is used to characterize the flame's response to inlet velocity fluctuations. The observed flame response can be explained in terms of the interaction of two flame perturbation mechanisms, one originating at flame-anchoring point and propagating along the flame front and the other from vorticity field generated in the outer shear layer in the annular mixing section. An analysis of the phase-synchronized flame images show that when both perturbations arrive at the flame at the same time (or phase), they constructively interfere, producing the second peak observed in the gain curves. When the perturbations arrive at the flame 180 degrees out-of-phase, they destructively interfere, producing the observed minimum in the gain curve. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Flame response mechanisms due to velocity perturbations in a lean premixed gas turbine combustor [texte imprimé] / Brian Jones, Auteur ; Jong Guen Lee, Auteur ; Bryan D. Quay, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 09 p.
Mots-clés : Combustion Flames Flow visualisation Gas turbines Transfer functions Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The response of turbulent premixed flames to inlet velocity fluctuations is studied experimentally in a lean premixed, swirl-stabilized, gas turbine combustor. Overall chemiluminescence intensity is used as a measure of the fluctuations in the flame's global heat release rate, and hot wire anemometry is used to measure the inlet velocity fluctuations. Tests are conducted over a range of mean inlet velocities, equivalence ratios, and velocity fluctuation frequencies, while the normalized inlet velocity fluctuation (V[prime]/Vmean) is fixed at 5% to ensure linear flame response over the employed modulation frequency range. The measurements are used to calculate a flame transfer function relating the velocity fluctuation to the heat release fluctuation as a function of the velocity fluctuation frequency. At low frequency, the gain of the flame transfer function increases with increasing frequency to a peak value greater than 1. As the frequency is further increased, the gain decreases to a minimum value, followed by a second smaller peak. The frequencies at which the gain is minimum and achieves its second peak are found to depend on the convection time scale and the flame's characteristic length scale. Phase-synchronized CH* chemiluminescence imaging is used to characterize the flame's response to inlet velocity fluctuations. The observed flame response can be explained in terms of the interaction of two flame perturbation mechanisms, one originating at flame-anchoring point and propagating along the flame front and the other from vorticity field generated in the outer shear layer in the annular mixing section. An analysis of the phase-synchronized flame images show that when both perturbations arrive at the flame at the same time (or phase), they constructively interfere, producing the second peak observed in the gain curves. When the perturbations arrive at the flame 180 degrees out-of-phase, they destructively interfere, producing the observed minimum in the gain curve. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques / W. Meier in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 06 p.
Titre : Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques Type de document : texte imprimé Auteurs : W. Meier, Auteur ; I. Boxx, Auteur ; C. Arndt, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Chemiluminescence Flames Flow visualisation Fluorescence Ignition Jets Laminar flow Laser beam applications Measurement systems Velocimeters Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An experimental arrangement for the investigation of auto-ignition of a pulsed CH4 jet in a coflow of hot exhaust gas from a laminar lean premixed H2/air flame at atmospheric pressure is presented. The ignition events were captured by high-speed imaging of the OH* chemiluminescence associated with the igniting flame kernels at a frame rate of 5 kHz. The flow-field characteristics were determined by high-speed particle image velocimetry and Schlieren images. Furthermore, high-speed imaging of laser-induced fluorescence of OH was applied to visualize the exhaust gas flow and the ignition events. Auto-ignition was observed to occur at the periphery of the CH4 jet with high reproducibility in different runs concerning time and location. In each measurement run, several hundred consecutive single shot images were recorded from which sample images are presented. The main goals of the study are the presentation of the experimental arrangement and the high-speed measuring systems and a characterization of the auto-ignition events occurring in this system. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques [texte imprimé] / W. Meier, Auteur ; I. Boxx, Auteur ; C. Arndt, Auteur . - 2012 . - 06 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 06 p.
Mots-clés : Chemiluminescence Flames Flow visualisation Fluorescence Ignition Jets Laminar flow Laser beam applications Measurement systems Velocimeters Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An experimental arrangement for the investigation of auto-ignition of a pulsed CH4 jet in a coflow of hot exhaust gas from a laminar lean premixed H2/air flame at atmospheric pressure is presented. The ignition events were captured by high-speed imaging of the OH* chemiluminescence associated with the igniting flame kernels at a frame rate of 5 kHz. The flow-field characteristics were determined by high-speed particle image velocimetry and Schlieren images. Furthermore, high-speed imaging of laser-induced fluorescence of OH was applied to visualize the exhaust gas flow and the ignition events. Auto-ignition was observed to occur at the periphery of the CH4 jet with high reproducibility in different runs concerning time and location. In each measurement run, several hundred consecutive single shot images were recorded from which sample images are presented. The main goals of the study are the presentation of the experimental arrangement and the high-speed measuring systems and a characterization of the auto-ignition events occurring in this system. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Computational modeling of turbulent mixing of a transverse jet / Elizaveta M. Ivanova in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 07 p.
Titre : Computational modeling of turbulent mixing of a transverse jet Type de document : texte imprimé Auteurs : Elizaveta M. Ivanova, Auteur ; Berthold E. Noll, Auteur ; Aigner, Manfred, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Jets Navier-Stokes equations Numerical analysis Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents numerical simulations of turbulent mixing of a jet in crossflow. The test case is chosen to resemble scalar mixing processes in the premixing zones of gas turbine combustion chambers. Steady and unsteady simulations employing three different computational approaches are presented: steady Reynolds-averaged Navier–Stokes, unsteady Reynolds-averaged Navier–Stokes, and scale-adaptive simulations. Presented results comprise the (time-averaged) profiles of flow velocities, turbulent kinetic energy of the flow, Reynolds stresses, passive scalar distribution, turbulent scalar fluxes, and the turbulent variance of the passive scalar. All presented results are directly validated against experimental data. Additionally, two parameter studies are presented. Both studies are related to the accuracy of the turbulent scalar mixing predictions for all used simulation methods. In the first study, the dependence of the scalar mixing predictions on the value of the turbulent Schmidt number is considered. In the second study, the dependence of the predicted turbulent scalar variance on the used modeling approach is analyzed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Computational modeling of turbulent mixing of a transverse jet [texte imprimé] / Elizaveta M. Ivanova, Auteur ; Berthold E. Noll, Auteur ; Aigner, Manfred, Auteur . - 2012 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 07 p.
Mots-clés : Jets Navier-Stokes equations Numerical analysis Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents numerical simulations of turbulent mixing of a jet in crossflow. The test case is chosen to resemble scalar mixing processes in the premixing zones of gas turbine combustion chambers. Steady and unsteady simulations employing three different computational approaches are presented: steady Reynolds-averaged Navier–Stokes, unsteady Reynolds-averaged Navier–Stokes, and scale-adaptive simulations. Presented results comprise the (time-averaged) profiles of flow velocities, turbulent kinetic energy of the flow, Reynolds stresses, passive scalar distribution, turbulent scalar fluxes, and the turbulent variance of the passive scalar. All presented results are directly validated against experimental data. Additionally, two parameter studies are presented. Both studies are related to the accuracy of the turbulent scalar mixing predictions for all used simulation methods. In the first study, the dependence of the scalar mixing predictions on the value of the turbulent Schmidt number is considered. In the second study, the dependence of the predicted turbulent scalar variance on the used modeling approach is analyzed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Numerical and experimental analysis of the temperature distribution in a hydrogen fuelled combustor for a 10 MW gas turbine / Massimo Masi in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 09 p.
Titre : Numerical and experimental analysis of the temperature distribution in a hydrogen fuelled combustor for a 10 MW gas turbine Type de document : texte imprimé Auteurs : Massimo Masi, Auteur ; Paolo Gobbato, Auteur ; Andrea Toffolo, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Blades Chemically reactive flow Combustion Computational fluid dynamics Cooling Engines Flow simulation Gas turbines Numerical analysis Temperature distribution Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Proper cooling of the hot components and an optimal temperature distribution at the turbine inlet are fundamental targets for gas turbine combustors. In particular, the temperature distribution at the combustor discharge is a critical issue for the durability of the turbine blades and the high performance of the engine. At present, CFD is a widely used tool to simulate the reacting flow inside gas turbine combustors. This paper presents a numerical analysis of a single can type combustor designed to be fed both with hydrogen and natural gas. The combustor also features a steam injection system to restrain the NOx pollutants. The simulations were carried out to quantify the effect of fuel type and steam injection on the temperature field. The CFD model employs a computationally low cost approach, thus the physical domain is meshed with a coarse grid. A full-scale test campaign was performed on the combustor: temperatures at the liner wall and the combustor outlet were acquired at different operating conditions. These experimental data, which are discussed, were used to evaluate the capability of the present CFD model to predict temperature values for combustor operation with different fuels and steam to fuel ratios. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Numerical and experimental analysis of the temperature distribution in a hydrogen fuelled combustor for a 10 MW gas turbine [texte imprimé] / Massimo Masi, Auteur ; Paolo Gobbato, Auteur ; Andrea Toffolo, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 09 p.
Mots-clés : Blades Chemically reactive flow Combustion Computational fluid dynamics Cooling Engines Flow simulation Gas turbines Numerical analysis Temperature distribution Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Proper cooling of the hot components and an optimal temperature distribution at the turbine inlet are fundamental targets for gas turbine combustors. In particular, the temperature distribution at the combustor discharge is a critical issue for the durability of the turbine blades and the high performance of the engine. At present, CFD is a widely used tool to simulate the reacting flow inside gas turbine combustors. This paper presents a numerical analysis of a single can type combustor designed to be fed both with hydrogen and natural gas. The combustor also features a steam injection system to restrain the NOx pollutants. The simulations were carried out to quantify the effect of fuel type and steam injection on the temperature field. The CFD model employs a computationally low cost approach, thus the physical domain is meshed with a coarse grid. A full-scale test campaign was performed on the combustor: temperatures at the liner wall and the combustor outlet were acquired at different operating conditions. These experimental data, which are discussed, were used to evaluate the capability of the present CFD model to predict temperature values for combustor operation with different fuels and steam to fuel ratios. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Modeling and performance analysis of the rolls-royce fuel cell systems limited: 1 MW plant / Francesco Trasino in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 11 p.
Titre : Modeling and performance analysis of the rolls-royce fuel cell systems limited: 1 MW plant Type de document : texte imprimé Auteurs : Francesco Trasino, Auteur ; Michele Bozzolo, Auteur ; Loredana Magistri, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Fuel cell power plants Pressure vessels Solid oxide fuel cells Turbogenerators Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper is focused on the performance of the 1 MW plant designed and developed by Rolls-Royce Fuel Cell Systems Limited. The system consists of a two stage turbogenerator coupled with pressure vessels containing the fuel cell stack, internal reformer, cathode ejector, anode ejector, and off-gas burner. While the overall scheme is relatively simple, due to the limited number of components, the interaction between the components is complex and the system behavior is determined by many parameters. In particular, two important subsystems such as the cathode and the anode recycle loops must be carefully analyzed also considering their interaction with and influence on the turbogenerator performance. The system performance model represents the whole, and each physical component is modeled in detail as a subsystem. The component models have been validated or are under verification. The model provides all the operating parameters in each characteristic point of the plant and a complete distribution of thermodynamics and chemical parameters inside the solid oxide fuel cell (SOFC) stack and reformer. In order to characterize the system behavior, its operating envelope has been calculated taking into account the effect of ambient temperature and pressure, as described in the paper. Given the complexity of the system, various constraints have to be considered in order to obtain a safe operating condition not only for the system as a whole but also for each of its parts. In particular each point calculated has to comply with several constraints such as stack temperature distribution, maximum and minimum temperatures, and high and low pressure spool maximum rotational speeds. The model developed and the results presented in the paper provide important information for the definition of an appropriate control strategy and a first step in the development of a robust and optimized control system. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Modeling and performance analysis of the rolls-royce fuel cell systems limited: 1 MW plant [texte imprimé] / Francesco Trasino, Auteur ; Michele Bozzolo, Auteur ; Loredana Magistri, Auteur . - 2012 . - 11 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 11 p.
Mots-clés : Fuel cell power plants Pressure vessels Solid oxide fuel cells Turbogenerators Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper is focused on the performance of the 1 MW plant designed and developed by Rolls-Royce Fuel Cell Systems Limited. The system consists of a two stage turbogenerator coupled with pressure vessels containing the fuel cell stack, internal reformer, cathode ejector, anode ejector, and off-gas burner. While the overall scheme is relatively simple, due to the limited number of components, the interaction between the components is complex and the system behavior is determined by many parameters. In particular, two important subsystems such as the cathode and the anode recycle loops must be carefully analyzed also considering their interaction with and influence on the turbogenerator performance. The system performance model represents the whole, and each physical component is modeled in detail as a subsystem. The component models have been validated or are under verification. The model provides all the operating parameters in each characteristic point of the plant and a complete distribution of thermodynamics and chemical parameters inside the solid oxide fuel cell (SOFC) stack and reformer. In order to characterize the system behavior, its operating envelope has been calculated taking into account the effect of ambient temperature and pressure, as described in the paper. Given the complexity of the system, various constraints have to be considered in order to obtain a safe operating condition not only for the system as a whole but also for each of its parts. In particular each point calculated has to comply with several constraints such as stack temperature distribution, maximum and minimum temperatures, and high and low pressure spool maximum rotational speeds. The model developed and the results presented in the paper provide important information for the definition of an appropriate control strategy and a first step in the development of a robust and optimized control system. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Numerical study of aerodynamic losses of effusion cooling holes in aero-engine combustor liners / A. Andreini in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 10 p.
Titre : Numerical study of aerodynamic losses of effusion cooling holes in aero-engine combustor liners Type de document : texte imprimé Auteurs : A. Andreini, Auteur ; A. Bonini, Auteur ; G. Caciolli, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Aerodynamics Aerospace engines Computational fluid dynamics Coolants Cooling Jets Navier-Stokes equations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Due to the stringent cooling requirements of novel aero-engines combustor liners, a comprehensive understanding of the phenomena concerning the interaction of hot gases with typical coolant jets plays a major role in the design of efficient cooling systems. In this work, an aerodynamic analysis of the effusion cooling system of an aero-engine combustor liner was performed; the aim was the definition of a correlation for the discharge coefficient (CD) of the single effusion hole. The data were taken from a set of CFD RANS (Reynolds-averaged Navier-Stokes) simulations, in which the behavior of the effusion cooling system was investigated over a wide range of thermo/fluid-dynamics conditions. In some of these tests, the influence on the effusion flow of an additional air bleeding port was taken into account, making it possible to analyze its effects on effusion holes CD. An in depth analysis of the numerical data set has pointed out the opportunity of an efficient reduction through the ratio of the annulus and the hole Reynolds numbers: The dependence of the discharge coefficients from this parameter is roughly linear. The correlation was included in an in-house one-dimensional thermo/fluid network solver, and its results were compared with CFD data. An overall good agreement of pressure and mass flow rate distributions was observed. The main source of inaccuracy was observed in the case of relevant air bleed mass flow rates due to the inherent three-dimensional behavior of the flow close to bleed opening. An additional comparison with experimental data was performed in order to improve the confidence in the accuracy of the correlation: Within the validity range of pressure ratios in which the correlation is defined (>1.02), this comparison pointed out a good reliability in the prediction of discharge coefficients. An approach to model air bleeding was then proposed, with the assessment of its impact on liner wall temperature prediction. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Numerical study of aerodynamic losses of effusion cooling holes in aero-engine combustor liners [texte imprimé] / A. Andreini, Auteur ; A. Bonini, Auteur ; G. Caciolli, Auteur . - 2012 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 10 p.
Mots-clés : Aerodynamics Aerospace engines Computational fluid dynamics Coolants Cooling Jets Navier-Stokes equations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Due to the stringent cooling requirements of novel aero-engines combustor liners, a comprehensive understanding of the phenomena concerning the interaction of hot gases with typical coolant jets plays a major role in the design of efficient cooling systems. In this work, an aerodynamic analysis of the effusion cooling system of an aero-engine combustor liner was performed; the aim was the definition of a correlation for the discharge coefficient (CD) of the single effusion hole. The data were taken from a set of CFD RANS (Reynolds-averaged Navier-Stokes) simulations, in which the behavior of the effusion cooling system was investigated over a wide range of thermo/fluid-dynamics conditions. In some of these tests, the influence on the effusion flow of an additional air bleeding port was taken into account, making it possible to analyze its effects on effusion holes CD. An in depth analysis of the numerical data set has pointed out the opportunity of an efficient reduction through the ratio of the annulus and the hole Reynolds numbers: The dependence of the discharge coefficients from this parameter is roughly linear. The correlation was included in an in-house one-dimensional thermo/fluid network solver, and its results were compared with CFD data. An overall good agreement of pressure and mass flow rate distributions was observed. The main source of inaccuracy was observed in the case of relevant air bleed mass flow rates due to the inherent three-dimensional behavior of the flow close to bleed opening. An additional comparison with experimental data was performed in order to improve the confidence in the accuracy of the correlation: Within the validity range of pressure ratios in which the correlation is defined (>1.02), this comparison pointed out a good reliability in the prediction of discharge coefficients. An approach to model air bleeding was then proposed, with the assessment of its impact on liner wall temperature prediction. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Derivation of temperature-estimation equation based on microstructural changes in coatings of in-service blades of gas turbines / Mitsutoshi Okada in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 06 p.
Titre : Derivation of temperature-estimation equation based on microstructural changes in coatings of in-service blades of gas turbines Type de document : texte imprimé Auteurs : Mitsutoshi Okada, Auteur ; Tohru Hisamatsu, Auteur ; Terutaka Fujioka, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Blades Cobalt compounds Diffusion Gas turbines Nickel compounds Thermal barrier coatings Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A CoNiCrAlY-coated blade of an in-service gas turbine is analyzed, and a diffusion layer is formed along the boundary between the coating and the substrate due to the interdiffusion in the middle and tip of the blade. Such a layer is not observed in the vicinity of the blade root because of a comparatively low temperature during the operation. Coated specimens are prepared from the portions of the blade devoid of the diffusion layers, and the specimens are exposed to a high temperature in air. On the basis of the increase in the diffusion layer thickness, an equation for estimating the temperature of the blade is derived. An analysis of another in-service blade with a thermal barrier coating is carried out. The aluminum content decreases below the bond coat surface due to Al diffusion caused by the Al-oxide formation. This results in the formation of an Al-decreased layer (ADL) along the leading and trailing edges. The ADL is not observed at the center of the blade chord. The specimens are extracted from the portions of the blade that are devoid of ADL, and they are subjected to a high temperature in air. On the basis of the increase in the ADL thickness, a temperature-estimation equation is derived. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Derivation of temperature-estimation equation based on microstructural changes in coatings of in-service blades of gas turbines [texte imprimé] / Mitsutoshi Okada, Auteur ; Tohru Hisamatsu, Auteur ; Terutaka Fujioka, Auteur . - 2012 . - 06 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 06 p.
Mots-clés : Blades Cobalt compounds Diffusion Gas turbines Nickel compounds Thermal barrier coatings Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A CoNiCrAlY-coated blade of an in-service gas turbine is analyzed, and a diffusion layer is formed along the boundary between the coating and the substrate due to the interdiffusion in the middle and tip of the blade. Such a layer is not observed in the vicinity of the blade root because of a comparatively low temperature during the operation. Coated specimens are prepared from the portions of the blade devoid of the diffusion layers, and the specimens are exposed to a high temperature in air. On the basis of the increase in the diffusion layer thickness, an equation for estimating the temperature of the blade is derived. An analysis of another in-service blade with a thermal barrier coating is carried out. The aluminum content decreases below the bond coat surface due to Al diffusion caused by the Al-oxide formation. This results in the formation of an Al-decreased layer (ADL) along the leading and trailing edges. The ADL is not observed at the center of the blade chord. The specimens are extracted from the portions of the blade that are devoid of ADL, and they are subjected to a high temperature in air. On the basis of the increase in the ADL thickness, a temperature-estimation equation is derived. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Performance benefits of a portable hybrid micro-gas turbine power system for automotive applications / Fanos Christodoulou in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 08 p.
Titre : Performance benefits of a portable hybrid micro-gas turbine power system for automotive applications Type de document : texte imprimé Auteurs : Fanos Christodoulou, Auteur ; Panagiotis Giannakakis, Auteur ; Anestis I. Kalfas, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Air pollution control Gas turbines Hybrid electric vehicles Hybrid power systems Micromechanical devices Secondary cells Traction Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The lower fuel burn and pollutant emissions of hybrid electric vehicles give a strong motivation and encourage further investigations in this field. The know-how on hybrid vehicle technology is maturing, and the reliability of such power schemes is being tested in the mass production. The current research effort is to investigate novel configurations, which could achieve further performance benefits. This paper presents an assessment of a novel hybrid configuration comprising a micro-gas turbine, a battery bank, and a traction motor, focusing on its potential contribution to the reduction in fuel burn and emissions. The power required for the propulsion of the vehicle is provided by the electric motor. The electric power is stored by the batteries, which are charged by a periodic function of the micro-gas turbine. The micro-gas turbine starts up when the battery depth of discharge exceeds 80%, and its function continues until the batteries are full. The performance of the vehicle is investigated using an integrated software platform. The calculated acceleration performance and fuel economy are compared with those of conventional vehicles of the same power. The sensitivity of the results to the variation in the vehicle parameters such as mass, kinetic energy recovery, and battery type is calculated to identify the conditions under which the application of this hybrid technology offers potential benefits. The results indicate that if no mass penalties are incurred by the installation of additional components, the fuel savings can exceed 23%. However, an increase in the vehicle's weight can shrink this benefit especially in the case of light vehicles. Lightweight batteries and kinetic energy recovery systems are deemed essential, enabling technologies for a realistic application of this hybrid system. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Performance benefits of a portable hybrid micro-gas turbine power system for automotive applications [texte imprimé] / Fanos Christodoulou, Auteur ; Panagiotis Giannakakis, Auteur ; Anestis I. Kalfas, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 08 p.
Mots-clés : Air pollution control Gas turbines Hybrid electric vehicles Hybrid power systems Micromechanical devices Secondary cells Traction Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The lower fuel burn and pollutant emissions of hybrid electric vehicles give a strong motivation and encourage further investigations in this field. The know-how on hybrid vehicle technology is maturing, and the reliability of such power schemes is being tested in the mass production. The current research effort is to investigate novel configurations, which could achieve further performance benefits. This paper presents an assessment of a novel hybrid configuration comprising a micro-gas turbine, a battery bank, and a traction motor, focusing on its potential contribution to the reduction in fuel burn and emissions. The power required for the propulsion of the vehicle is provided by the electric motor. The electric power is stored by the batteries, which are charged by a periodic function of the micro-gas turbine. The micro-gas turbine starts up when the battery depth of discharge exceeds 80%, and its function continues until the batteries are full. The performance of the vehicle is investigated using an integrated software platform. The calculated acceleration performance and fuel economy are compared with those of conventional vehicles of the same power. The sensitivity of the results to the variation in the vehicle parameters such as mass, kinetic energy recovery, and battery type is calculated to identify the conditions under which the application of this hybrid technology offers potential benefits. The results indicate that if no mass penalties are incurred by the installation of additional components, the fuel savings can exceed 23%. However, an increase in the vehicle's weight can shrink this benefit especially in the case of light vehicles. Lightweight batteries and kinetic energy recovery systems are deemed essential, enabling technologies for a realistic application of this hybrid system. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Vibration diagnosis featuring blade-shaft coupling effect of turbine rotor models / Norihisa Anegawa in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 08 p.
Titre : Vibration diagnosis featuring blade-shaft coupling effect of turbine rotor models Type de document : texte imprimé Auteurs : Norihisa Anegawa, Auteur ; Hiroyuki Fujiwara, Auteur ; Osami Matsushita, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Blades Couplings Nuclear power stations Rotors Shafts Steam turbines Turbines Vibrations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : As is well known, zero and one nodal diameter (k=0 and k=1) modes of a blade system interact with the shaft system. The former couples with torsional and/or axial shaft vibrations, and the latter with bending shaft vibrations. This paper addresses the latter. With respect to k=1 modes, we discuss, from experimental and theoretical viewpoints, in-plane blades and out-of-plane blades attached radially to a rotating shaft. We found that when we excited the shaft at the rotational speed of Omega=|omegab−omegas| (where omegab is the blade natural frequency, omegas the shaft natural frequency, and Omega is the rotational speed), the exciting frequency nu=omegas induced shaft-blade coupling resonance. In addition, in the case of the in-plane blade system, we encountered an additional resonance attributed to deformation caused by gravity. In the case of the out-of-plane blade system, we experienced two types of abnormal vibrations. One is the additional resonance generated at Omega=omegab/2 due to the unbalanced shaft and the anisotropy of bearing stiffness. The other is a flow-induced, self-excited vibration caused by galloping due to the cross-sectional shape of the blade tip because this instability disappeared in the rotation test inside a vacuum chamber. The two types of abnormal vibrations occurred at the same time, and both led to the entrainment phenomenon, as identified by our own frequency analysis technique. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Vibration diagnosis featuring blade-shaft coupling effect of turbine rotor models [texte imprimé] / Norihisa Anegawa, Auteur ; Hiroyuki Fujiwara, Auteur ; Osami Matsushita, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 08 p.
Mots-clés : Blades Couplings Nuclear power stations Rotors Shafts Steam turbines Turbines Vibrations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : As is well known, zero and one nodal diameter (k=0 and k=1) modes of a blade system interact with the shaft system. The former couples with torsional and/or axial shaft vibrations, and the latter with bending shaft vibrations. This paper addresses the latter. With respect to k=1 modes, we discuss, from experimental and theoretical viewpoints, in-plane blades and out-of-plane blades attached radially to a rotating shaft. We found that when we excited the shaft at the rotational speed of Omega=|omegab−omegas| (where omegab is the blade natural frequency, omegas the shaft natural frequency, and Omega is the rotational speed), the exciting frequency nu=omegas induced shaft-blade coupling resonance. In addition, in the case of the in-plane blade system, we encountered an additional resonance attributed to deformation caused by gravity. In the case of the out-of-plane blade system, we experienced two types of abnormal vibrations. One is the additional resonance generated at Omega=omegab/2 due to the unbalanced shaft and the anisotropy of bearing stiffness. The other is a flow-induced, self-excited vibration caused by galloping due to the cross-sectional shape of the blade tip because this instability disappeared in the rotation test inside a vacuum chamber. The two types of abnormal vibrations occurred at the same time, and both led to the entrainment phenomenon, as identified by our own frequency analysis technique. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Vibration analysis of a nonlinear system with cyclic symmetry / Aurélien Grolet in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 09 p.
Titre : Vibration analysis of a nonlinear system with cyclic symmetry Type de document : texte imprimé Auteurs : Aurélien Grolet, Auteur ; Fabrice Thouverez, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Bifurcation Dynamic response Nonlinear differential equations Nonlinear systems Stability Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This work is devoted to the study of nonlinear dynamics of structures with cyclic symmetry under geometrical nonlinearity using the harmonic balance method (HBM). In order to study the influence of the nonlinearity due to large deflection of blades, a simplified model has been developed. It leads to nonlinear differential equations of the second order, linearly coupled, in which the nonlinearity appears by cubic terms. Periodic solutions in both free and forced cases are sought by the HBM coupled with an arc length continuation and stability analysis. In this study, specific attention has been paid to the evaluation of nonlinear modes and to the influence of excitation on dynamic responses. Indeed, several cases of excitation have been analyzed: punctual one and tuned or detuned low engine order. This paper shows that for a localized, or sufficiently detuned, excitation, several solutions can coexist, some of them being represented by closed curves in the frequency-amplitude domain. Those different kinds of solution meet up when increasing the force amplitude, leading to forced nonlinear localization. As the closed curves are not tied with the basic nonlinear solution, they are easily missed. They were calculated using a sequential continuation with the force amplitude as a parameter. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Vibration analysis of a nonlinear system with cyclic symmetry [texte imprimé] / Aurélien Grolet, Auteur ; Fabrice Thouverez, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 09 p.
Mots-clés : Bifurcation Dynamic response Nonlinear differential equations Nonlinear systems Stability Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This work is devoted to the study of nonlinear dynamics of structures with cyclic symmetry under geometrical nonlinearity using the harmonic balance method (HBM). In order to study the influence of the nonlinearity due to large deflection of blades, a simplified model has been developed. It leads to nonlinear differential equations of the second order, linearly coupled, in which the nonlinearity appears by cubic terms. Periodic solutions in both free and forced cases are sought by the HBM coupled with an arc length continuation and stability analysis. In this study, specific attention has been paid to the evaluation of nonlinear modes and to the influence of excitation on dynamic responses. Indeed, several cases of excitation have been analyzed: punctual one and tuned or detuned low engine order. This paper shows that for a localized, or sufficiently detuned, excitation, several solutions can coexist, some of them being represented by closed curves in the frequency-amplitude domain. Those different kinds of solution meet up when increasing the force amplitude, leading to forced nonlinear localization. As the closed curves are not tied with the basic nonlinear solution, they are easily missed. They were calculated using a sequential continuation with the force amplitude as a parameter. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Experiments on the transient performance of an adaptive multi-objective controller for rotating machinery / Sahinkaya, M. Necip in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 07 p.
Titre : Experiments on the transient performance of an adaptive multi-objective controller for rotating machinery Type de document : texte imprimé Auteurs : Sahinkaya, M. Necip, Auteur ; Abulrub, Abdul-Hadi G., Auteur ; Patrick S. Keogh, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Adaptive control Machine bearings Machine control Magnetic bearings Transient analysis Turbomachinery Vibration control Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper describes an experimental assessment of the transient performance of a multi-objective adaptive approach to the control of flexible rotors. This is applicable to any arrangement of controllable bearings or actuators. In the case reported here, the rotor is supported by active magnetic bearings. The theory underlying the controller is outlined. The objectives include minimization of the forces transmitted to the base while restricting rotor vibrations to a user-defined limit. A third objective is to prevent rotor contact with the auxiliary bearings, which are used to protect the active elements. These objectives are met by a two-stage weighting strategy followed by the adaptive control of two parameters that automatically and continuously adjust the weightings of individual objective functions to satisfy user-defined performance criteria. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Experiments on the transient performance of an adaptive multi-objective controller for rotating machinery [texte imprimé] / Sahinkaya, M. Necip, Auteur ; Abulrub, Abdul-Hadi G., Auteur ; Patrick S. Keogh, Auteur . - 2012 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 07 p.
Mots-clés : Adaptive control Machine bearings Machine control Magnetic bearings Transient analysis Turbomachinery Vibration control Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper describes an experimental assessment of the transient performance of a multi-objective adaptive approach to the control of flexible rotors. This is applicable to any arrangement of controllable bearings or actuators. In the case reported here, the rotor is supported by active magnetic bearings. The theory underlying the controller is outlined. The objectives include minimization of the forces transmitted to the base while restricting rotor vibrations to a user-defined limit. A third objective is to prevent rotor contact with the auxiliary bearings, which are used to protect the active elements. These objectives are met by a two-stage weighting strategy followed by the adaptive control of two parameters that automatically and continuously adjust the weightings of individual objective functions to satisfy user-defined performance criteria. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Prediction of aeroacoustic resonance in cavities of hole-pattern stator seals / David N. Liliedahl in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 10 p.
Titre : Prediction of aeroacoustic resonance in cavities of hole-pattern stator seals Type de document : texte imprimé Auteurs : David N. Liliedahl, Auteur ; Forrest L. Carpenter, Auteur ; Paul G. A. Cizmas, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Aeroacoustics Channel flow External flows Flow instability Flow simulation Navier-Stokes equations Seals (stoppers) Stators Turbomachinery Vortices Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A Reynolds-averaged Navier–Stokes (RANS) solver developed in-house was used to simulate grazing channel flow past single and multiple cavities. The objective of this investigation was to predict fluid instabilities in hole-pattern stator seals. The numerical results generated with the RANS solver showed good agreement with those obtained using a commercial large eddy simulation code. In addition, the numerical results agreed well with experimental data. Rossiter's formula, a popular semi-empirical model used to predict frequencies of hole-tone acoustic instabilities caused by grazing fluid flow past open cavities, was modified using the RANS solver results to allow for its application to channel flows. This was done by modifying the empirical constant kappa, the ratio of vortex velocity, and the freestream velocity. The dominant frequencies predicted using Rossiter's formula with the new kappa value matched well with the experimental data for hole-pattern stator seals. The RANS solver accurately captured the salient features of the flow/acoustic interaction and predicted well the dominant acoustic frequencies measured in an experimental investigation. The flow solver also provided detailed physical insight into the cavity flow instability mechanism. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Prediction of aeroacoustic resonance in cavities of hole-pattern stator seals [texte imprimé] / David N. Liliedahl, Auteur ; Forrest L. Carpenter, Auteur ; Paul G. A. Cizmas, Auteur . - 2012 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 10 p.
Mots-clés : Aeroacoustics Channel flow External flows Flow instability Flow simulation Navier-Stokes equations Seals (stoppers) Stators Turbomachinery Vortices Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A Reynolds-averaged Navier–Stokes (RANS) solver developed in-house was used to simulate grazing channel flow past single and multiple cavities. The objective of this investigation was to predict fluid instabilities in hole-pattern stator seals. The numerical results generated with the RANS solver showed good agreement with those obtained using a commercial large eddy simulation code. In addition, the numerical results agreed well with experimental data. Rossiter's formula, a popular semi-empirical model used to predict frequencies of hole-tone acoustic instabilities caused by grazing fluid flow past open cavities, was modified using the RANS solver results to allow for its application to channel flows. This was done by modifying the empirical constant kappa, the ratio of vortex velocity, and the freestream velocity. The dominant frequencies predicted using Rossiter's formula with the new kappa value matched well with the experimental data for hole-pattern stator seals. The RANS solver accurately captured the salient features of the flow/acoustic interaction and predicted well the dominant acoustic frequencies measured in an experimental investigation. The flow solver also provided detailed physical insight into the cavity flow instability mechanism. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] A new analysis tool assessment for rotordynamic modeling of gas foil bearings / Samuel A. Howard in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 09 p.
Titre : A new analysis tool assessment for rotordynamic modeling of gas foil bearings Type de document : texte imprimé Auteurs : Samuel A. Howard, Auteur ; Luis San Andrés, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Machine bearings Maintenance engineering Rotors Turbomachinery Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Gas foil bearings offer several advantages over traditional bearing types that make them attractive for use in high-speed turbomachinery. They can operate at very high temperatures, require no lubrication supply (oil pumps, seals, etc.), exhibit very long life with no maintenance, and once operating airborne, have very low power loss. The use of gas foil bearings in high-speed turbomachinery has been accelerating in recent years although the pace has been slow. One of the contributing factors to the slow growth has been a lack of analysis tools, benchmarked to measurements, to predict gas foil bearing behavior in rotating machinery. To address this shortcoming, NASA Glenn Research Center (GRC) has supported the development of analytical tools to predict gas foil bearing performance. One of the codes has the capability to predict rotordynamic coefficients, power loss, film thickness, structural deformation, and more. The current paper presents an assessment of the predictive capability of the code named XLGFBTH©. A test rig at GRC is used as a simulated case study to compare rotordynamic analysis using output from the code to actual rotor response as measured in the test rig. The test rig rotor is supported on two gas foil journal bearings manufactured at GRC with all pertinent geometry disclosed. The resulting comparison shows that the rotordynamic coefficients calculated using XLGFBTH© represent the dynamics of the system reasonably well especially as they pertain to predicting critical speeds. DEWEY : 620.1 ISSN : 0742-4795 En ligne : scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000133000002 [...] [article] A new analysis tool assessment for rotordynamic modeling of gas foil bearings [texte imprimé] / Samuel A. Howard, Auteur ; Luis San Andrés, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 09 p.
Mots-clés : Machine bearings Maintenance engineering Rotors Turbomachinery Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Gas foil bearings offer several advantages over traditional bearing types that make them attractive for use in high-speed turbomachinery. They can operate at very high temperatures, require no lubrication supply (oil pumps, seals, etc.), exhibit very long life with no maintenance, and once operating airborne, have very low power loss. The use of gas foil bearings in high-speed turbomachinery has been accelerating in recent years although the pace has been slow. One of the contributing factors to the slow growth has been a lack of analysis tools, benchmarked to measurements, to predict gas foil bearing behavior in rotating machinery. To address this shortcoming, NASA Glenn Research Center (GRC) has supported the development of analytical tools to predict gas foil bearing performance. One of the codes has the capability to predict rotordynamic coefficients, power loss, film thickness, structural deformation, and more. The current paper presents an assessment of the predictive capability of the code named XLGFBTH©. A test rig at GRC is used as a simulated case study to compare rotordynamic analysis using output from the code to actual rotor response as measured in the test rig. The test rig rotor is supported on two gas foil journal bearings manufactured at GRC with all pertinent geometry disclosed. The resulting comparison shows that the rotordynamic coefficients calculated using XLGFBTH© represent the dynamics of the system reasonably well especially as they pertain to predicting critical speeds. DEWEY : 620.1 ISSN : 0742-4795 En ligne : scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000133000002 [...] Numerical and experimental characterization of a natural gas engine with partially stratified charge spark ignition / E. C. Chan in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 08 p.
Titre : Numerical and experimental characterization of a natural gas engine with partially stratified charge spark ignition Type de document : texte imprimé Auteurs : E. C. Chan, Auteur ; M. H. Davy, Auteur ; G. de Simone, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combustion Ignition Internal combustion engines Numerical analysis Stratified flow Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper outlines the development of a comprehensive numerical framework for the partially stratified charge (PSC) lean-burn natural gas engine. A 3D model of the engine was implemented to represent fluid motion and combustion. The spark ignition model was based on the works of Herweg and Maly (1992, “A Fundamental Model for Flame Kernel Formation in SI Engines,” SAE Technical Publication, Paper No. 922243) and Tan and Reitz (2006, “An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling,” Combust. Flame, 145, pp. 1–15). The EDC model (Ertesvåg and Magnussen, 2000, “The Eddy Dissipation Turbulence Energy Cascade Model,” Combust. Sci. Technol., 159, pp. 213–235) with a two-step mechanism was used to model natural gas turbulent combustion process. An open geometry simulation strategy was adopted to account for intake-exhaust gas and valve movements. Each simulation was executed for multiple cycles to produce a representative residual gas fraction. The numerical results were compared with the experimental data obtained on the Ricardo Hydra single cylinder research engine for both homogeneous and PSC cases and they were found to be in excellent agreement in pressure trace and heat release rate. The detailed investigation of the numerical data showed the development of an ignitable mixture under PSC cases, allowing stable kernel growth well beyond the lean misfire limit of the bulk mixture. Furthermore, limits on successful ignition can be identified using the ignition model, which exhibited self-similar behavior in terms of flame speed and turbulent fluctuation. It can also be shown that, at ultralean air-fuel ratios, the PSC plume helps replicate the ignition conditions that can be found under stoichiometric operation. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Numerical and experimental characterization of a natural gas engine with partially stratified charge spark ignition [texte imprimé] / E. C. Chan, Auteur ; M. H. Davy, Auteur ; G. de Simone, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 08 p.
Mots-clés : Combustion Ignition Internal combustion engines Numerical analysis Stratified flow Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper outlines the development of a comprehensive numerical framework for the partially stratified charge (PSC) lean-burn natural gas engine. A 3D model of the engine was implemented to represent fluid motion and combustion. The spark ignition model was based on the works of Herweg and Maly (1992, “A Fundamental Model for Flame Kernel Formation in SI Engines,” SAE Technical Publication, Paper No. 922243) and Tan and Reitz (2006, “An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling,” Combust. Flame, 145, pp. 1–15). The EDC model (Ertesvåg and Magnussen, 2000, “The Eddy Dissipation Turbulence Energy Cascade Model,” Combust. Sci. Technol., 159, pp. 213–235) with a two-step mechanism was used to model natural gas turbulent combustion process. An open geometry simulation strategy was adopted to account for intake-exhaust gas and valve movements. Each simulation was executed for multiple cycles to produce a representative residual gas fraction. The numerical results were compared with the experimental data obtained on the Ricardo Hydra single cylinder research engine for both homogeneous and PSC cases and they were found to be in excellent agreement in pressure trace and heat release rate. The detailed investigation of the numerical data showed the development of an ignitable mixture under PSC cases, allowing stable kernel growth well beyond the lean misfire limit of the bulk mixture. Furthermore, limits on successful ignition can be identified using the ignition model, which exhibited self-similar behavior in terms of flame speed and turbulent fluctuation. It can also be shown that, at ultralean air-fuel ratios, the PSC plume helps replicate the ignition conditions that can be found under stoichiometric operation. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Simulation of instantaneous heat transfer in spark ignition internal combustion engines / David R. Buttsworth in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 05 p.
Titre : Simulation of instantaneous heat transfer in spark ignition internal combustion engines : unsteady thermal boundary layer modeling Type de document : texte imprimé Auteurs : David R. Buttsworth, Auteur ; Abdalla Agrira, Auteur ; Ray Malpress, Auteur Année de publication : 2012 Article en page(s) : 05 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Boundary layer turbulence Heat transfer Ignition Internal combustion engines Sparks Thermal conductivity Thermodynamics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Simulation of internal combustion engine heat transfer using low-dimensional thermodynamic modeling often relies on quasisteady heat transfer correlations. However, unsteady thermal boundary layer modeling could make a useful contribution because of the inherent unsteadiness of the internal combustion engine environment. Previous formulations of the unsteady energy equations for internal combustion engine thermal boundary layer modeling appear to imply that it is necessary to adopt the restrictive assumption that isentropic processes occur in the gas external to the thermal boundary layer. Such restrictions are not required and we have investigated if unsteady modeling can improve the simulation of crank-resolved heat transfer. A modest degree of success is reported for the present modeling, which relies on a constant effective turbulent thermal conductivity. Improvement in the unsteady thermal boundary layer simulations is expected in the future when the temporal and spatial variations in effective turbulent conductivity are correctly modeled. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Simulation of instantaneous heat transfer in spark ignition internal combustion engines : unsteady thermal boundary layer modeling [texte imprimé] / David R. Buttsworth, Auteur ; Abdalla Agrira, Auteur ; Ray Malpress, Auteur . - 2012 . - 05 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 05 p.
Mots-clés : Boundary layer turbulence Heat transfer Ignition Internal combustion engines Sparks Thermal conductivity Thermodynamics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Simulation of internal combustion engine heat transfer using low-dimensional thermodynamic modeling often relies on quasisteady heat transfer correlations. However, unsteady thermal boundary layer modeling could make a useful contribution because of the inherent unsteadiness of the internal combustion engine environment. Previous formulations of the unsteady energy equations for internal combustion engine thermal boundary layer modeling appear to imply that it is necessary to adopt the restrictive assumption that isentropic processes occur in the gas external to the thermal boundary layer. Such restrictions are not required and we have investigated if unsteady modeling can improve the simulation of crank-resolved heat transfer. A modest degree of success is reported for the present modeling, which relies on a constant effective turbulent thermal conductivity. Improvement in the unsteady thermal boundary layer simulations is expected in the future when the temporal and spatial variations in effective turbulent conductivity are correctly modeled. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Thermal aspects of uranium carbide and uranium dicarbide fuels in supercritical water-cooled nuclear reactors / Lisa Grande in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 07 p.
Titre : Thermal aspects of uranium carbide and uranium dicarbide fuels in supercritical water-cooled nuclear reactors Type de document : texte imprimé Auteurs : Lisa Grande, Auteur ; Bryan Villamere, Auteur ; Leyland Allison, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Boilers Fuel Nuclear power stations Uranium Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Supercritical water-cooled nuclear reactors (SCWRs) are a Generation IV reactor concept. SCWRs will use a light-water coolant at operating parameters set above the critical point of water (22.1 MPa and 374°C). One reason for moving from current Nuclear Power Plant (NPP) designs to SCW NPP designs is to increase the thermal efficiency. The thermal efficiency of existing NPPs is between 30% and 35% compared with 45% and 50% of supercritical water (SCW) NPPs. Another benefit of SCWRs is the use of a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc. can be eliminated. Canada is in the process of conceptualizing a pressure tube (PT) type SCWR. This concept refers to a 1200-MWel PT-type reactor. Coolant operating parameters are as follows: a pressure of 25 MPa, a channel inlet temperature of 350°C, and an outlet temperature of 625°C. The sheath material and nuclear fuel must be able to withstand these extreme conditions. In general, the primary choice for the sheath is a zirconium alloy and the fuel is an enriched uranium dioxide (UO2). The sheath-temperature design limit is 850°C, and the industry accepted limit for the fuel centerline temperature is 1850°C. Previous studies have shown that the maximum fuel centerline temperature of a UO2 pellet might exceed this industry accepted limit at SCWR conditions. Therefore, alternative fuels with higher thermal conductivities need to be investigated for SCWR use. Uranium carbide (UC), uranium nitride (UN), and uranium dicarbide (UC2) are excellent fuel choices as they all have higher thermal conductivities compared with conventional nuclear fuels such as UO2, mixed oxides (MOX), and thoria (ThO2). Inconel-600 has been selected as the sheath material due its high corrosion resistance and high yield strength in aggressive supercritical water (SCW) at high-temperatures. This paper presents the thermalhydraulics calculations of a generic PT-type SCWR fuel channel with a 43-element Inconel-600 bundle with UC and UC2 fuels. The bulk-fluid, sheath and fuel centerline temperature profiles, together with a heat transfer coefficient profile, were calculated for a generic PT-type SCWR fuel-bundle string. Fuel bundles with UC and UC2 fuels with various axial heat flux profiles (AHFPs) are acceptable since they do not exceed the sheath-temperature design limit of 850°C, and the industry accepted limit for the fuel centerline temperature of 1850°C. The most desirable case in terms of the lowest fuel centerline temperature is the UC fuel with the upstream-skewed cosine AHFP. In this case, the fuel centerline temperature does not exceed even the sheath-temperature design limit of 850°C. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Thermal aspects of uranium carbide and uranium dicarbide fuels in supercritical water-cooled nuclear reactors [texte imprimé] / Lisa Grande, Auteur ; Bryan Villamere, Auteur ; Leyland Allison, Auteur . - 2012 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 07 p.
Mots-clés : Boilers Fuel Nuclear power stations Uranium Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Supercritical water-cooled nuclear reactors (SCWRs) are a Generation IV reactor concept. SCWRs will use a light-water coolant at operating parameters set above the critical point of water (22.1 MPa and 374°C). One reason for moving from current Nuclear Power Plant (NPP) designs to SCW NPP designs is to increase the thermal efficiency. The thermal efficiency of existing NPPs is between 30% and 35% compared with 45% and 50% of supercritical water (SCW) NPPs. Another benefit of SCWRs is the use of a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc. can be eliminated. Canada is in the process of conceptualizing a pressure tube (PT) type SCWR. This concept refers to a 1200-MWel PT-type reactor. Coolant operating parameters are as follows: a pressure of 25 MPa, a channel inlet temperature of 350°C, and an outlet temperature of 625°C. The sheath material and nuclear fuel must be able to withstand these extreme conditions. In general, the primary choice for the sheath is a zirconium alloy and the fuel is an enriched uranium dioxide (UO2). The sheath-temperature design limit is 850°C, and the industry accepted limit for the fuel centerline temperature is 1850°C. Previous studies have shown that the maximum fuel centerline temperature of a UO2 pellet might exceed this industry accepted limit at SCWR conditions. Therefore, alternative fuels with higher thermal conductivities need to be investigated for SCWR use. Uranium carbide (UC), uranium nitride (UN), and uranium dicarbide (UC2) are excellent fuel choices as they all have higher thermal conductivities compared with conventional nuclear fuels such as UO2, mixed oxides (MOX), and thoria (ThO2). Inconel-600 has been selected as the sheath material due its high corrosion resistance and high yield strength in aggressive supercritical water (SCW) at high-temperatures. This paper presents the thermalhydraulics calculations of a generic PT-type SCWR fuel channel with a 43-element Inconel-600 bundle with UC and UC2 fuels. The bulk-fluid, sheath and fuel centerline temperature profiles, together with a heat transfer coefficient profile, were calculated for a generic PT-type SCWR fuel-bundle string. Fuel bundles with UC and UC2 fuels with various axial heat flux profiles (AHFPs) are acceptable since they do not exceed the sheath-temperature design limit of 850°C, and the industry accepted limit for the fuel centerline temperature of 1850°C. The most desirable case in terms of the lowest fuel centerline temperature is the UC fuel with the upstream-skewed cosine AHFP. In this case, the fuel centerline temperature does not exceed even the sheath-temperature design limit of 850°C. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Safety evaluation of the HTTR-IS nuclear hydrogen production system / Hiroyuki Sato in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 08 p.
Titre : Safety evaluation of the HTTR-IS nuclear hydrogen production system Type de document : texte imprimé Auteurs : Hiroyuki Sato, Auteur ; Hirofumi Ohashi, Auteur ; Yujiro Tazawa, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Fission reactors Hydrogen production Iodine Nuclear power stations Safety Sulphur Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The establishment of a safety evaluation method is one of the key issues for the nuclear hydrogen production demonstration since fundamental differences in the safety philosophy between nuclear plants and chemical plants exist. In the present study, a practical safety evaluation method, which enables to design, construct, and operate hydrogen production plants under conventional chemical plant standards, is proposed. An event identification is conducted for the HTTR-IS system, a nuclear hydrogen production system by thermochemical water splitting iodine-sulfur process (IS process) utilizing the heat from the high temperature engineering test reactor (HTTR) in order to select abnormal events, which would change the scenario and quantitative results of the evaluation items from the existing HTTR safety evaluation. In addition, a safety analysis is performed for the identified events. The results of safety analysis for the identified five anticipated operational occurrences (AOOs) and three accidents (ACDs) show that evaluating items such as a primary cooling system pressure, temperatures of heat transfer tubes at pressure boundary, etc., do not exceed the acceptance criteria during the scenario. In addition, the increase of peak fuel temperature is small in the most severe case and therefore, the reactor core was not damaged and cooled sufficiently. These results will contribute to the safety review from the government and demonstration of the nuclear production of hydrogen. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Safety evaluation of the HTTR-IS nuclear hydrogen production system [texte imprimé] / Hiroyuki Sato, Auteur ; Hirofumi Ohashi, Auteur ; Yujiro Tazawa, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 08 p.
Mots-clés : Fission reactors Hydrogen production Iodine Nuclear power stations Safety Sulphur Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The establishment of a safety evaluation method is one of the key issues for the nuclear hydrogen production demonstration since fundamental differences in the safety philosophy between nuclear plants and chemical plants exist. In the present study, a practical safety evaluation method, which enables to design, construct, and operate hydrogen production plants under conventional chemical plant standards, is proposed. An event identification is conducted for the HTTR-IS system, a nuclear hydrogen production system by thermochemical water splitting iodine-sulfur process (IS process) utilizing the heat from the high temperature engineering test reactor (HTTR) in order to select abnormal events, which would change the scenario and quantitative results of the evaluation items from the existing HTTR safety evaluation. In addition, a safety analysis is performed for the identified events. The results of safety analysis for the identified five anticipated operational occurrences (AOOs) and three accidents (ACDs) show that evaluating items such as a primary cooling system pressure, temperatures of heat transfer tubes at pressure boundary, etc., do not exceed the acceptance criteria during the scenario. In addition, the increase of peak fuel temperature is small in the most severe case and therefore, the reactor core was not damaged and cooled sufficiently. These results will contribute to the safety review from the government and demonstration of the nuclear production of hydrogen. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Ultralow-emission combustion and control system installation into mature power plant gas turbines / Jeffrey A. Benoit in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 07 p.
Titre : Ultralow-emission combustion and control system installation into mature power plant gas turbines Type de document : texte imprimé Auteurs : Jeffrey A. Benoit, Auteur ; Charles Ellis, Auteur ; Joseph Cook, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Air pollution control Combustion Gas turbines Power generation economics Power plants Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The search for power plant sustainability options continues as regulating agencies exert more stringent industrial gas turbine emission requirements on operators. Purchasing power for resale, decomissioning current capabilities altogether, and repowering by replacing or converting existing equipment to comply with emission standards are economic-driven options contemplated by many mature gas turbine operators. One Las Vegas, NV operator, NV Energy, with four natural gas-fired W501B6 combined cycle units at their Edward W. Clark Generating Station, was in this situation in 2006. The units, originally configured with diffusion flame combustion systems, were permitted at 103 ppm NOx with regulatory mandates to significantly reduce NOx emissions to below 5 ppm by the end of 2009. Studies were conducted by the operator to evaluate the economic viability of using a selective catalytic reduction system, which would have forced significant modifications to the exhaust system and heat recovery steam generator, or convert the turbines to operate with dry low-emission combustion systems. Based on life cycle cost and installation complexity, the ultralow-emission combustion system was selected. This technical paper focuses on a short summary of the end user considerations in downselecting options, the ultralow emissions technology, and key features employed to achieve these low emissions, an overview of the conversion scope and a review and description of the control technology employed. Finally, a technical discussion of the low-emission operational flexibility will be provided including performance results of the converted units. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Ultralow-emission combustion and control system installation into mature power plant gas turbines [texte imprimé] / Jeffrey A. Benoit, Auteur ; Charles Ellis, Auteur ; Joseph Cook, Auteur . - 2012 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 07 p.
Mots-clés : Air pollution control Combustion Gas turbines Power generation economics Power plants Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The search for power plant sustainability options continues as regulating agencies exert more stringent industrial gas turbine emission requirements on operators. Purchasing power for resale, decomissioning current capabilities altogether, and repowering by replacing or converting existing equipment to comply with emission standards are economic-driven options contemplated by many mature gas turbine operators. One Las Vegas, NV operator, NV Energy, with four natural gas-fired W501B6 combined cycle units at their Edward W. Clark Generating Station, was in this situation in 2006. The units, originally configured with diffusion flame combustion systems, were permitted at 103 ppm NOx with regulatory mandates to significantly reduce NOx emissions to below 5 ppm by the end of 2009. Studies were conducted by the operator to evaluate the economic viability of using a selective catalytic reduction system, which would have forced significant modifications to the exhaust system and heat recovery steam generator, or convert the turbines to operate with dry low-emission combustion systems. Based on life cycle cost and installation complexity, the ultralow-emission combustion system was selected. This technical paper focuses on a short summary of the end user considerations in downselecting options, the ultralow emissions technology, and key features employed to achieve these low emissions, an overview of the conversion scope and a review and description of the control technology employed. Finally, a technical discussion of the low-emission operational flexibility will be provided including performance results of the converted units. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]
Exemplaires
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
aucun exemplaire |