Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Transactions of the ASME . Journal of engineering for gas turbines and power / Wennerstrom, Arthur J. . Vol. 133 N° 9Journal of engineering for gas turbines and powerMention de date : Septembre 2011 Paru le : 12/02/2012 |
Dépouillements
Ajouter le résultat dans votre panierCompressive creep testing of thermal barrier coated nickel-based superalloys / Ventzislav G. Karaivanov in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Titre : Compressive creep testing of thermal barrier coated nickel-based superalloys Type de document : texte imprimé Auteurs : Ventzislav G. Karaivanov, Auteur ; William S. Slaughter, Auteur ; Sean Siw, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Aerodynamics Compressive strength Compressive testing Creep Failure analysis Gas turbines Nanoindentation Nickel alloys Scanning electron microscopy Superalloys Surface roughness Thermal barrier coatings Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Turbine airfoils have complex geometries and, during service operation, are subjected to complex loadings. In most publications, results are typically reported for either uniaxial, isothermal tensile creep or for thermal cyclic tests. The former generally provides data for creep of the superalloy and the overall performance, and the later provide data for thermal barrier coating (TBC) spallation as a function of thermally grown oxide thickness, surface roughness, temperature, and thermal mismatch between the layers. Both tests provide valuable data but little is known about the effect of compressive creep strain on the performance of the superalloy/protective system at elevated temperatures. In conjunction with computational model development, laboratory-scale experimental validation was undertaken to verify the viability of the underlying damage mechanics concepts for the evolution of TBC damage. Nickel-based single crystal René N5 coupons that were coated with a ~150–200 µm MCrAlY bond coat and a ~200–240 µm 7-YSZ APS top coat were used in this effort. The coupons were exposed to 900°C, 1000°C, and 1100°C, for periods of 100 h, 300 h, 1000 h, and 3000 h in slotted silicon carbide fixtures. The difference in the coefficients of thermal expansion of the René N5 substrate and the test fixture introduces thermally induced compressive stress in the coupon samples. Exposed samples were cross sectioned and evaluated using scanning electron microscopy. Performance data were collected based on image analysis. Energy-dispersive X-ray was employed to study the elemental distribution in the TBC system after exposure. To better understand the loading and failure mechanisms of the coating system under loading conditions, nanoindentation was used to study the mechanical properties (Young's modulus and hardness) of the components in the TBC system and their evolution with temperature and time. The effect of uniaxial in-plane compressive creep strain on the rate of growth of the thermally grown oxide layer, the time to coating failure in TBC systems, and the evolution in the mechanical properties are presented. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Compressive creep testing of thermal barrier coated nickel-based superalloys [texte imprimé] / Ventzislav G. Karaivanov, Auteur ; William S. Slaughter, Auteur ; Sean Siw, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Mots-clés : Aerodynamics Compressive strength Compressive testing Creep Failure analysis Gas turbines Nanoindentation Nickel alloys Scanning electron microscopy Superalloys Surface roughness Thermal barrier coatings Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Turbine airfoils have complex geometries and, during service operation, are subjected to complex loadings. In most publications, results are typically reported for either uniaxial, isothermal tensile creep or for thermal cyclic tests. The former generally provides data for creep of the superalloy and the overall performance, and the later provide data for thermal barrier coating (TBC) spallation as a function of thermally grown oxide thickness, surface roughness, temperature, and thermal mismatch between the layers. Both tests provide valuable data but little is known about the effect of compressive creep strain on the performance of the superalloy/protective system at elevated temperatures. In conjunction with computational model development, laboratory-scale experimental validation was undertaken to verify the viability of the underlying damage mechanics concepts for the evolution of TBC damage. Nickel-based single crystal René N5 coupons that were coated with a ~150–200 µm MCrAlY bond coat and a ~200–240 µm 7-YSZ APS top coat were used in this effort. The coupons were exposed to 900°C, 1000°C, and 1100°C, for periods of 100 h, 300 h, 1000 h, and 3000 h in slotted silicon carbide fixtures. The difference in the coefficients of thermal expansion of the René N5 substrate and the test fixture introduces thermally induced compressive stress in the coupon samples. Exposed samples were cross sectioned and evaluated using scanning electron microscopy. Performance data were collected based on image analysis. Energy-dispersive X-ray was employed to study the elemental distribution in the TBC system after exposure. To better understand the loading and failure mechanisms of the coating system under loading conditions, nanoindentation was used to study the mechanical properties (Young's modulus and hardness) of the components in the TBC system and their evolution with temperature and time. The effect of uniaxial in-plane compressive creep strain on the rate of growth of the thermally grown oxide layer, the time to coating failure in TBC systems, and the evolution in the mechanical properties are presented. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Laminar flame speed measurements and modeling of pure alkanes and alkane blends at elevated pressures / William Lowry in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Titre : Laminar flame speed measurements and modeling of pure alkanes and alkane blends at elevated pressures Type de document : texte imprimé Auteurs : William Lowry, Auteur ; Jaap de Vries, Auteur ; Michael Krejci, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Blending Flames Flow measurement Gas turbines Laminar flow Length measurement Pressure Velocity measurement Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Alkanes such as methane, ethane, and propane make up a large portion of most natural gas fuels. Natural gas is the primary fuel used in industrial gas turbines for power generation. Because of this, a fundamental understanding of the physical characteristics such as the laminar flame speed is necessary. Most importantly, this information is needed at elevated pressures to have the most relevance to the gas turbine industry for engine design. This study includes experiments performed at elevated pressures, up to 10 atm initial pressure, and investigates the fuels in a pure form as well as in binary blends. Flame speed modeling was done using an improved version of the kinetics model that the authors have been developing over the past few years. Modeling was performed for a wide range of conditions, including elevated pressures. Experimental conditions include pure methane, pure ethane, 80/20 mixtures of methane/ethane, and 60/40 mixtures of methane/ethane at initial pressures of 1 atm, 5 atm, and 10 atm. Also included in this study are pure propane and 80/20 methane/propane mixtures at 1 atm and 5 atm. The laminar flame speed and Markstein length measurements were obtained from a high-pressure flame speed facility using a constant-volume vessel. The facility includes optical access, a high-speed camera, a schlieren optical setup, a mixing manifold, and an isolated control room. The experiments were performed at room temperature, and the resulting images were analyzed using linear regression. The experimental and modeling results are presented and compared with previously published data. The data herein agree well with the published data. In addition, a hybrid correlation was created to perform a rigorous uncertainty analysis. This correlation gives the total uncertainty of the experiment with respect to the true value rather than reporting the standard deviation of a repeated experiment. Included in the data set are high-pressure results at conditions where in many cases for the single-component fuels few data existed and for the binary blends no data existed prior to this study. Overall, the agreement between the model and data is excellent. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Laminar flame speed measurements and modeling of pure alkanes and alkane blends at elevated pressures [texte imprimé] / William Lowry, Auteur ; Jaap de Vries, Auteur ; Michael Krejci, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Mots-clés : Blending Flames Flow measurement Gas turbines Laminar flow Length measurement Pressure Velocity measurement Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Alkanes such as methane, ethane, and propane make up a large portion of most natural gas fuels. Natural gas is the primary fuel used in industrial gas turbines for power generation. Because of this, a fundamental understanding of the physical characteristics such as the laminar flame speed is necessary. Most importantly, this information is needed at elevated pressures to have the most relevance to the gas turbine industry for engine design. This study includes experiments performed at elevated pressures, up to 10 atm initial pressure, and investigates the fuels in a pure form as well as in binary blends. Flame speed modeling was done using an improved version of the kinetics model that the authors have been developing over the past few years. Modeling was performed for a wide range of conditions, including elevated pressures. Experimental conditions include pure methane, pure ethane, 80/20 mixtures of methane/ethane, and 60/40 mixtures of methane/ethane at initial pressures of 1 atm, 5 atm, and 10 atm. Also included in this study are pure propane and 80/20 methane/propane mixtures at 1 atm and 5 atm. The laminar flame speed and Markstein length measurements were obtained from a high-pressure flame speed facility using a constant-volume vessel. The facility includes optical access, a high-speed camera, a schlieren optical setup, a mixing manifold, and an isolated control room. The experiments were performed at room temperature, and the resulting images were analyzed using linear regression. The experimental and modeling results are presented and compared with previously published data. The data herein agree well with the published data. In addition, a hybrid correlation was created to perform a rigorous uncertainty analysis. This correlation gives the total uncertainty of the experiment with respect to the true value rather than reporting the standard deviation of a repeated experiment. Included in the data set are high-pressure results at conditions where in many cases for the single-component fuels few data existed and for the binary blends no data existed prior to this study. Overall, the agreement between the model and data is excellent. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Gas turbine combustor flow structure control through modification of the chamber geometry / B. S. Mohammad in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 08 p.
Titre : Gas turbine combustor flow structure control through modification of the chamber geometry Type de document : texte imprimé Auteurs : B. S. Mohammad, Auteur ; J. Cai, Auteur ; San-Mou Jeng, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combustion Doppler measurement Flow control Gas turbines Jets Laser velocimetry Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : As combustors are put in service, problems such as erosion, hot spots, and liner oxidation occur, and a solution based on lessons learned is essential to avoid similar problems in future combustor generations. In the present paper, a combustor flow structure control via combustor geometry alteration is investigated using laser Doppler velocimetry. Mainly, three configurations are studied. The first configuration is that of a swirl cup feeding a dump (rectangular cross section) combustor. The rectangular chamber is configured with a width to breadth (w/b) ratio of 85%. The second configuration is similar to the first one, but a combustion dome is installed. The dome is configured with a 9 deg difference in the expansion angle on both sides (asymmetric dome). The third configuration is that of a swirl cup and a combustion dome installed in a prototype combustor (single annular combustor (SAC) sector), with both primary and secondary dilution jets blocked. The SAC is configured with a cross sectional area that decreases toward the exit through the tilting of the inner combustor liner. The results show that the combustion dome eliminates the corner recirculation zone and the low velocity region close to the combustor walls. The combustion dome asymmetry results in a significant asymmetry in the velocity magnitude, as well as the turbulence activities and the tilting of the central recirculation zone (CRZ) toward the surface with the higher expansion angle. The liner tilting results in a 40% reduction in the length of the CRZ. However, once the primary jets are open, they define the termination point of the CRZ. The chamber w/b ratio results in a CRZ with the same diameter ratio (85%) in all configurations. Interestingly, the maximum reverse flow velocity is roughly constant in all measurement plans and configurations up to a downstream distance of 1R (R is the flare radius). However, with open primary jets, the CRZ strength increases appreciably. It appears that the confinement dictates both the flow field outside the CRZ and the size of the CRZ, while the swirl cup configuration mainly influences the strength of the CRZ. Regarding turbulence activities, the presence of the dome damps the fluctuations in the expanding swirling jet region. On the other hand, the primary jets increase the turbulence activities appreciably in the jet impingement region, as well as the upper portion of the CRZ (60% increase). DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Gas turbine combustor flow structure control through modification of the chamber geometry [texte imprimé] / B. S. Mohammad, Auteur ; J. Cai, Auteur ; San-Mou Jeng, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 08 p.
Mots-clés : Combustion Doppler measurement Flow control Gas turbines Jets Laser velocimetry Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : As combustors are put in service, problems such as erosion, hot spots, and liner oxidation occur, and a solution based on lessons learned is essential to avoid similar problems in future combustor generations. In the present paper, a combustor flow structure control via combustor geometry alteration is investigated using laser Doppler velocimetry. Mainly, three configurations are studied. The first configuration is that of a swirl cup feeding a dump (rectangular cross section) combustor. The rectangular chamber is configured with a width to breadth (w/b) ratio of 85%. The second configuration is similar to the first one, but a combustion dome is installed. The dome is configured with a 9 deg difference in the expansion angle on both sides (asymmetric dome). The third configuration is that of a swirl cup and a combustion dome installed in a prototype combustor (single annular combustor (SAC) sector), with both primary and secondary dilution jets blocked. The SAC is configured with a cross sectional area that decreases toward the exit through the tilting of the inner combustor liner. The results show that the combustion dome eliminates the corner recirculation zone and the low velocity region close to the combustor walls. The combustion dome asymmetry results in a significant asymmetry in the velocity magnitude, as well as the turbulence activities and the tilting of the central recirculation zone (CRZ) toward the surface with the higher expansion angle. The liner tilting results in a 40% reduction in the length of the CRZ. However, once the primary jets are open, they define the termination point of the CRZ. The chamber w/b ratio results in a CRZ with the same diameter ratio (85%) in all configurations. Interestingly, the maximum reverse flow velocity is roughly constant in all measurement plans and configurations up to a downstream distance of 1R (R is the flare radius). However, with open primary jets, the CRZ strength increases appreciably. It appears that the confinement dictates both the flow field outside the CRZ and the size of the CRZ, while the swirl cup configuration mainly influences the strength of the CRZ. Regarding turbulence activities, the presence of the dome damps the fluctuations in the expanding swirling jet region. On the other hand, the primary jets increase the turbulence activities appreciably in the jet impingement region, as well as the upper portion of the CRZ (60% increase). DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Establishment of a high quality database for the acoustic modeling of perforated liners / Claus Lahiri in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Titre : Establishment of a high quality database for the acoustic modeling of perforated liners Type de document : texte imprimé Auteurs : Claus Lahiri, Auteur ; Lars Enghardt, Auteur ; Friedrich Bake, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Acoustic measurement Combustion Damping Database management systems Gas turbines Mach number Mechanical engineering computing Mechanical stability Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Perforated liners, especially in combination with a bias flow, are very effective sound absorbers. When appplied to gas turbine combustors, they can suppress thermo-acoustic instabilities and thus allow the application of new combustion concepts concerning higher efficiency and lower emissions. While the successful application of such a damping concept has been shown, it is still not possible to accurately predict the damping performance of a given configuration. This paper provides a comprehensive database of high quality experimental data. Variations of geometric, fluid mechanic, and acoustic parameters have been studied, including realistic engine configurations. The results demonstrate each parameter influence on the damping performance. A low order thermo-acoustic model is used to simulate the test configurations numerically. The model shows a good agreement with the measurements for a wide range of geometries and Strouhal and bias flow Mach numbers. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Establishment of a high quality database for the acoustic modeling of perforated liners [texte imprimé] / Claus Lahiri, Auteur ; Lars Enghardt, Auteur ; Friedrich Bake, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Mots-clés : Acoustic measurement Combustion Damping Database management systems Gas turbines Mach number Mechanical engineering computing Mechanical stability Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Perforated liners, especially in combination with a bias flow, are very effective sound absorbers. When appplied to gas turbine combustors, they can suppress thermo-acoustic instabilities and thus allow the application of new combustion concepts concerning higher efficiency and lower emissions. While the successful application of such a damping concept has been shown, it is still not possible to accurately predict the damping performance of a given configuration. This paper provides a comprehensive database of high quality experimental data. Variations of geometric, fluid mechanic, and acoustic parameters have been studied, including realistic engine configurations. The results demonstrate each parameter influence on the damping performance. A low order thermo-acoustic model is used to simulate the test configurations numerically. The model shows a good agreement with the measurements for a wide range of geometries and Strouhal and bias flow Mach numbers. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Heat transfer and pressure losses of W-shaped small ribs at high Reynolds numbers for combustor liner / Tomoko Hagari in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 08 p.
Titre : Heat transfer and pressure losses of W-shaped small ribs at high Reynolds numbers for combustor liner Type de document : texte imprimé Auteurs : Tomoko Hagari, Auteur ; Katsuhiko Ishida, Auteur ; Takeo Oda, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Channel flow Combustion Cooling Gas turbines Heat transfer Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The present study investigates the heat transfer performance of W-shaped ribs in a rectangular channel with typical geometries and flow conditions for a combustor liner cooling passage. In order to assess the Reynolds number dependence on heat transfer enhancement by the ribs for the combustor cooling passage, experiments were conducted with channel Reynolds number ranging from 40,000 to 550,000. The ribs were located on one side of the channel and the rib height-to-hydraulic diameter ratio (e/Dh) was 0.006–0.014, which simulate the combustor liner cooling configurations. Rib pitch-to-height ratio (P/e) was 10. Rib-roughened copper plates with constant temperature were used to measure the averaged heat transfer coefficients. Measured results show that the heat transfer enhancements of about 3 were obtained over that of a flat plate at high Reynolds numbers for all cases. The slope of heat transfer coefficient becomes constant with increasing Reynolds number because of the laminar-turbulent transition around the ribs, which is considered to occur at Reynolds number based on rib height of about 1000. Pressure loss measurements showed that the friction coefficients are constantly 3–4.5 times higher than those of a flat plate for a fully turbulent flow such as a combustor cooling passage. Pressure loss by ribs seems not to have a significant impact to the overall combustor performance. Numerical calculations were conducted additionally for all test cases. Predicted amount of heat released from the ribs contributes about 40% of the overall heat release even for low ribs. Heat transfer on the rib surface is essential in the evaluation of the rib-roughened cooling passage. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Heat transfer and pressure losses of W-shaped small ribs at high Reynolds numbers for combustor liner [texte imprimé] / Tomoko Hagari, Auteur ; Katsuhiko Ishida, Auteur ; Takeo Oda, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 08 p.
Mots-clés : Channel flow Combustion Cooling Gas turbines Heat transfer Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The present study investigates the heat transfer performance of W-shaped ribs in a rectangular channel with typical geometries and flow conditions for a combustor liner cooling passage. In order to assess the Reynolds number dependence on heat transfer enhancement by the ribs for the combustor cooling passage, experiments were conducted with channel Reynolds number ranging from 40,000 to 550,000. The ribs were located on one side of the channel and the rib height-to-hydraulic diameter ratio (e/Dh) was 0.006–0.014, which simulate the combustor liner cooling configurations. Rib pitch-to-height ratio (P/e) was 10. Rib-roughened copper plates with constant temperature were used to measure the averaged heat transfer coefficients. Measured results show that the heat transfer enhancements of about 3 were obtained over that of a flat plate at high Reynolds numbers for all cases. The slope of heat transfer coefficient becomes constant with increasing Reynolds number because of the laminar-turbulent transition around the ribs, which is considered to occur at Reynolds number based on rib height of about 1000. Pressure loss measurements showed that the friction coefficients are constantly 3–4.5 times higher than those of a flat plate for a fully turbulent flow such as a combustor cooling passage. Pressure loss by ribs seems not to have a significant impact to the overall combustor performance. Numerical calculations were conducted additionally for all test cases. Predicted amount of heat released from the ribs contributes about 40% of the overall heat release even for low ribs. Heat transfer on the rib surface is essential in the evaluation of the rib-roughened cooling passage. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Gas turbine power augmentation / Mustapha Chaker in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 10 p.
Titre : Gas turbine power augmentation : parametric study relating to fog droplet size and its influence on evaporative efficiency Type de document : texte imprimé Auteurs : Mustapha Chaker, Auteur ; Cyrus B. Meher-Homji, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Cooling Ducts Evaporation Gas turbines Nozzles Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Several gas turbine power augmentation techniques are available to counter the detrimental drop in power and thermal efficiency that occur at high ambient temperatures. Inlet fogging and wet compression are two common and relatively simple techniques. This paper addresses the influence and importance of droplet size on evaporative cooling performance and efficiency. Spray nozzles used for inlet fogging and wet compression include impaction pin, swirl jet, air assisted, and swirl flash nozzle designs. The evaporation efficiency of the atomized droplets from these nozzles depends on the droplet size, size distribution, and spray plume shape. Droplets size varies with nozzle type, configuration, operating conditions, and nozzle manifold location in the gas turbine inlet duct and are affected by airflow velocity, residence time, coalescence effects, and water carryover. The proper selection of nozzle type, nozzle manifold location, and nozzle distribution are of cardinal importance to avoid large droplets and under-/oversaturated areas, which would affect compressor mechanical and aerodynamic efficiency. Analytical and numerical studies are compared with experimental results. This paper provides a comprehensive treatment of parameters affecting droplet size and will be of value to gas turbine fog system designers and users. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Gas turbine power augmentation : parametric study relating to fog droplet size and its influence on evaporative efficiency [texte imprimé] / Mustapha Chaker, Auteur ; Cyrus B. Meher-Homji, Auteur . - 2012 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 10 p.
Mots-clés : Cooling Ducts Evaporation Gas turbines Nozzles Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Several gas turbine power augmentation techniques are available to counter the detrimental drop in power and thermal efficiency that occur at high ambient temperatures. Inlet fogging and wet compression are two common and relatively simple techniques. This paper addresses the influence and importance of droplet size on evaporative cooling performance and efficiency. Spray nozzles used for inlet fogging and wet compression include impaction pin, swirl jet, air assisted, and swirl flash nozzle designs. The evaporation efficiency of the atomized droplets from these nozzles depends on the droplet size, size distribution, and spray plume shape. Droplets size varies with nozzle type, configuration, operating conditions, and nozzle manifold location in the gas turbine inlet duct and are affected by airflow velocity, residence time, coalescence effects, and water carryover. The proper selection of nozzle type, nozzle manifold location, and nozzle distribution are of cardinal importance to avoid large droplets and under-/oversaturated areas, which would affect compressor mechanical and aerodynamic efficiency. Analytical and numerical studies are compared with experimental results. This paper provides a comprehensive treatment of parameters affecting droplet size and will be of value to gas turbine fog system designers and users. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Fatigue properties of narrow and wide gap braze repaired joints / Thomas Henhoeffer in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 07 p.
Titre : Fatigue properties of narrow and wide gap braze repaired joints Type de document : texte imprimé Auteurs : Thomas Henhoeffer, Auteur ; Huang, Xiao, Auteur ; Scott Yandt, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Boron alloys Creep testing Fatigue testing Gas turbines Life testing Maintenance engineering Nickel alloys Scanning electron microscopes Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : With the increasing utilization of braze repair in the gas turbine industry, the properties of braze joints under simulated service conditions become vital in selecting braze repair over other processes. While braze repair has often been claimed to deliver mechanical properties equivalent to that of the parent material, this is largely based on the results of tensile or accelerated creep tests for most gas turbine hot section components failure occurs as a result of thermal fatigue or thermomechanical fatigue. The damage that occurs under such conditions cannot be assessed from tensile or creep testing. This study was undertaken to characterize the fatigue properties of narrow and wide gap brazed X-40 cobalt-based superalloy and compare these properties to that of the X-40 parent material. Butt joint narrow gap and wide gap specimens were vacuum brazed using BNi-9 braze alloy. X-40 and IN-738 were used as additive materials in wide gap braze joints. To characterize the fatigue properties of the braze joints and parent material, isothermal fatigue tests were conducted at 950°C and under load control using a fully reversed sinusoidal wave form having stress amplitude of 75% of the yield strength of the parent material. The braze specimens were fatigue tested in the as-brazed condition. The fatigue test results showed that the fatigue lives of the brazed specimens were lower than that of the parent material, particularly for the narrow gap samples and wide gap samples containing IN-738 additive alloy. All fatigue failures in the brazed samples occurred in the braze joints. An analysis of the fracture surfaces using a scanning electron microscope revealed that porosity was the major contributing factor to fatigue failures in the wide gap braze joints. The testing life debit observed in the narrow gap braze samples can be attributed to the presence of brittle boride phases in the braze joint. This study also included examination of techniques for reducing the aforementioned porosity and presence of brittle intermetallic phases. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Fatigue properties of narrow and wide gap braze repaired joints [texte imprimé] / Thomas Henhoeffer, Auteur ; Huang, Xiao, Auteur ; Scott Yandt, Auteur . - 2012 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 07 p.
Mots-clés : Boron alloys Creep testing Fatigue testing Gas turbines Life testing Maintenance engineering Nickel alloys Scanning electron microscopes Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : With the increasing utilization of braze repair in the gas turbine industry, the properties of braze joints under simulated service conditions become vital in selecting braze repair over other processes. While braze repair has often been claimed to deliver mechanical properties equivalent to that of the parent material, this is largely based on the results of tensile or accelerated creep tests for most gas turbine hot section components failure occurs as a result of thermal fatigue or thermomechanical fatigue. The damage that occurs under such conditions cannot be assessed from tensile or creep testing. This study was undertaken to characterize the fatigue properties of narrow and wide gap brazed X-40 cobalt-based superalloy and compare these properties to that of the X-40 parent material. Butt joint narrow gap and wide gap specimens were vacuum brazed using BNi-9 braze alloy. X-40 and IN-738 were used as additive materials in wide gap braze joints. To characterize the fatigue properties of the braze joints and parent material, isothermal fatigue tests were conducted at 950°C and under load control using a fully reversed sinusoidal wave form having stress amplitude of 75% of the yield strength of the parent material. The braze specimens were fatigue tested in the as-brazed condition. The fatigue test results showed that the fatigue lives of the brazed specimens were lower than that of the parent material, particularly for the narrow gap samples and wide gap samples containing IN-738 additive alloy. All fatigue failures in the brazed samples occurred in the braze joints. An analysis of the fracture surfaces using a scanning electron microscope revealed that porosity was the major contributing factor to fatigue failures in the wide gap braze joints. The testing life debit observed in the narrow gap braze samples can be attributed to the presence of brittle boride phases in the braze joint. This study also included examination of techniques for reducing the aforementioned porosity and presence of brittle intermetallic phases. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] High-temperature performance of cast CF8C-plus austenitic stainless steel / Philip J. Maziasz in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 05 p.
Titre : High-temperature performance of cast CF8C-plus austenitic stainless steel Type de document : texte imprimé Auteurs : Philip J. Maziasz, Auteur ; Bruce A. Pint, Auteur Année de publication : 2012 Article en page(s) : 05 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Austenitic stainless steel Casting Creep Fracture Gas turbines High-temperature effects Oxidation Thermal stress cracking Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600–900°C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor. DEWEY : 620.1 ISSN : 0742-4795 En ligne : High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel [article] High-temperature performance of cast CF8C-plus austenitic stainless steel [texte imprimé] / Philip J. Maziasz, Auteur ; Bruce A. Pint, Auteur . - 2012 . - 05 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 05 p.
Mots-clés : Austenitic stainless steel Casting Creep Fracture Gas turbines High-temperature effects Oxidation Thermal stress cracking Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600–900°C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor. DEWEY : 620.1 ISSN : 0742-4795 En ligne : High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel Experimental analyses of a first generation foil bearing / Laurent Rudloff in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Titre : Experimental analyses of a first generation foil bearing : startup torque and dynamic coefficients Type de document : texte imprimé Auteurs : Laurent Rudloff, Auteur ; Arghir, Mihai, Auteur ; Olivier Bonneau, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Machine bearings Shafts Torque measurement Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents the results of the experimental analysis of static and dynamic characteristics of a generation 1 foil bearing of 38.1 mm diameter and L/D=1. The test rig is of floating bearing type, the rigid shaft being mounted on ceramic ball bearings and driven up to 40 krpm. Two different casings are used for startup and for measurement of dynamic coefficients. In its first configuration, the test rig is designed to measure the startup torque. The foil bearing casing is made of two rings separated by a needle bearing to enable an almost torque free rotation between the foil bearing and the static load. The basic results are the startup torque and the lift-off speed. In its second configuration, a different casing is used to measure the impedances of the foil bearing. Misalignment is a problem that is minimized by using three flexible stingers connecting the foil bearing casing to the base plate of the test rig. The test rig enables the application of a static load and of the dynamic excitation on the journal bearing casing and can measure displacements, forces, and accelerations. Working conditions consisted of static loads comprised between 10 N and 50 N and rotation frequencies ranging from 260 Hz to 590 Hz. Excitation frequencies comprised between 100 Hz and 600 Hz are applied by two orthogonally mounted shakers for each working condition. Stiffness and damping coefficients are identified from the complex impedances and enable the calculation of natural frequencies. The experimental results show that the dynamic characteristics of the tested bearing have a weak dependence on the rotation speed but vary with the excitation frequency. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Experimental analyses of a first generation foil bearing : startup torque and dynamic coefficients [texte imprimé] / Laurent Rudloff, Auteur ; Arghir, Mihai, Auteur ; Olivier Bonneau, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Mots-clés : Machine bearings Shafts Torque measurement Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents the results of the experimental analysis of static and dynamic characteristics of a generation 1 foil bearing of 38.1 mm diameter and L/D=1. The test rig is of floating bearing type, the rigid shaft being mounted on ceramic ball bearings and driven up to 40 krpm. Two different casings are used for startup and for measurement of dynamic coefficients. In its first configuration, the test rig is designed to measure the startup torque. The foil bearing casing is made of two rings separated by a needle bearing to enable an almost torque free rotation between the foil bearing and the static load. The basic results are the startup torque and the lift-off speed. In its second configuration, a different casing is used to measure the impedances of the foil bearing. Misalignment is a problem that is minimized by using three flexible stingers connecting the foil bearing casing to the base plate of the test rig. The test rig enables the application of a static load and of the dynamic excitation on the journal bearing casing and can measure displacements, forces, and accelerations. Working conditions consisted of static loads comprised between 10 N and 50 N and rotation frequencies ranging from 260 Hz to 590 Hz. Excitation frequencies comprised between 100 Hz and 600 Hz are applied by two orthogonally mounted shakers for each working condition. Stiffness and damping coefficients are identified from the complex impedances and enable the calculation of natural frequencies. The experimental results show that the dynamic characteristics of the tested bearing have a weak dependence on the rotation speed but vary with the excitation frequency. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] A probabilistic secondary flow system design process for gas turbine engines / Douglas L. Ramerth in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 08 p.
Titre : A probabilistic secondary flow system design process for gas turbine engines Type de document : texte imprimé Auteurs : Douglas L. Ramerth, Auteur ; Alexander V. MirzaMoghadam, Auteur ; Ashish Kiratsingh, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Aerospace engines Design engineering Flow simulation Gas turbines Probability Sensitivity analysis Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Gas turbine engine secondary flow systems are sensitive to variation in part dimensions, clearances, flow coefficients, swirl ratios, head loss factors, tolerances, boundary conditions, etc. This paper reveals a process and software application, which embodies the process, wherein both offer a measurable contribution to secondary airflow system reliability. The probabilistic methodology is empirically validated by (1) applying it to an engine component that failed in a validation test and (2) demonstrating that a multiple order sensitivity analysis performed during detailed design was unable to detect a failure mode while a probabilistic analysis revealed a small yet significant risk of failure. Therefore, a secondary flow analyst does not have a justifiable reason to be highly confident of a design qualified by a first, second, or higher order sensitivity analysis. The last example empirically demonstrates the compatibility of optimization techniques with probabilistic methods (as part of the process) to quantify the likelihood of failure and reveal an optimized design space of key characteristics, where risk is eliminated and the effects of variation are controlled. Trade study analysis is more valuable if it includes a quantitative evaluation of the effects of variation on alternate designs and the response to failure modes. A key feature of the software application is a relational database with the capability to configure and effectively manage flow networks in many forms including a status model, failure modes of the status model, multiple alternative designs, as well as failure modes specific to an alternative design. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] A probabilistic secondary flow system design process for gas turbine engines [texte imprimé] / Douglas L. Ramerth, Auteur ; Alexander V. MirzaMoghadam, Auteur ; Ashish Kiratsingh, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 08 p.
Mots-clés : Aerospace engines Design engineering Flow simulation Gas turbines Probability Sensitivity analysis Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Gas turbine engine secondary flow systems are sensitive to variation in part dimensions, clearances, flow coefficients, swirl ratios, head loss factors, tolerances, boundary conditions, etc. This paper reveals a process and software application, which embodies the process, wherein both offer a measurable contribution to secondary airflow system reliability. The probabilistic methodology is empirically validated by (1) applying it to an engine component that failed in a validation test and (2) demonstrating that a multiple order sensitivity analysis performed during detailed design was unable to detect a failure mode while a probabilistic analysis revealed a small yet significant risk of failure. Therefore, a secondary flow analyst does not have a justifiable reason to be highly confident of a design qualified by a first, second, or higher order sensitivity analysis. The last example empirically demonstrates the compatibility of optimization techniques with probabilistic methods (as part of the process) to quantify the likelihood of failure and reveal an optimized design space of key characteristics, where risk is eliminated and the effects of variation are controlled. Trade study analysis is more valuable if it includes a quantitative evaluation of the effects of variation on alternate designs and the response to failure modes. A key feature of the software application is a relational database with the capability to configure and effectively manage flow networks in many forms including a status model, failure modes of the status model, multiple alternative designs, as well as failure modes specific to an alternative design. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Identification and prediction of force coefficients in a five-pad and four-pad tilting pad bearing for load-on-pad and load-between-pad configurations / Adolfo Delgado in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Titre : Identification and prediction of force coefficients in a five-pad and four-pad tilting pad bearing for load-on-pad and load-between-pad configurations Type de document : texte imprimé Auteurs : Adolfo Delgado, Auteur ; Giuseppe Vannini, Auteur ; Bugra Ertas, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Lubrication Machine bearings Machine testing Rotors Turbomachinery Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents the identification of the rotordynamic force coefficients for direct lubrication five-pad and four-pad tilting pad bearings. The bearing is 110 mm in diameter with a L/D of 0.4 pad axial length (44 mm). The experiments include load-on-pad and load-between-pad configurations, with 0.5 and 0.6 pivot offsets, for rotor speeds ranging from 7500 rpm to 15,000 rpm. The bearing force coefficients are identified from multiple frequency excitations (20–300 Hz) exerted on the bearing housing by a pair of hydraulic shakers and are presented as a function of the excitation frequency and rotor speed for a 300 kPa unit load. The experimental results also include temperatures at the trailing edge of three pads. The direct force coefficients, identified from curve-fits of the complex dynamic stiffness, are frequency independent if considering an added mass term much smaller than the test device modal mass. The force coefficients from the four-pad bearing load-between-pad configuration show similar coefficients in the loaded and orthogonal directions. On the other hand, as expected, the five-pad bearing load-on-pad shows larger coefficients (~25%) in the loaded direction. The maximum pad temperature recorded for the 0.5 pivot offset configurations is up to 20°C higher than those associated to the 0.6 offset configuration. Results from a predictive code are within 50% of the experimental results for the direct stiffness coefficients and within 30% for the direct damping coefficients. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Identification and prediction of force coefficients in a five-pad and four-pad tilting pad bearing for load-on-pad and load-between-pad configurations [texte imprimé] / Adolfo Delgado, Auteur ; Giuseppe Vannini, Auteur ; Bugra Ertas, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Mots-clés : Lubrication Machine bearings Machine testing Rotors Turbomachinery Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents the identification of the rotordynamic force coefficients for direct lubrication five-pad and four-pad tilting pad bearings. The bearing is 110 mm in diameter with a L/D of 0.4 pad axial length (44 mm). The experiments include load-on-pad and load-between-pad configurations, with 0.5 and 0.6 pivot offsets, for rotor speeds ranging from 7500 rpm to 15,000 rpm. The bearing force coefficients are identified from multiple frequency excitations (20–300 Hz) exerted on the bearing housing by a pair of hydraulic shakers and are presented as a function of the excitation frequency and rotor speed for a 300 kPa unit load. The experimental results also include temperatures at the trailing edge of three pads. The direct force coefficients, identified from curve-fits of the complex dynamic stiffness, are frequency independent if considering an added mass term much smaller than the test device modal mass. The force coefficients from the four-pad bearing load-between-pad configuration show similar coefficients in the loaded and orthogonal directions. On the other hand, as expected, the five-pad bearing load-on-pad shows larger coefficients (~25%) in the loaded direction. The maximum pad temperature recorded for the 0.5 pivot offset configurations is up to 20°C higher than those associated to the 0.6 offset configuration. Results from a predictive code are within 50% of the experimental results for the direct stiffness coefficients and within 30% for the direct damping coefficients. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Friction factor behavior from flat-plate tests of smooth and hole-pattern roughened surfaces with supply pressures up to 84 bars / Childs, Dara W. in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 10 p.
Titre : Friction factor behavior from flat-plate tests of smooth and hole-pattern roughened surfaces with supply pressures up to 84 bars Type de document : texte imprimé Auteurs : Childs, Dara W., Auteur ; Bassem Kheireddin, Auteur ; Stephen Phillips, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Compressors Flow Friction Plates (structures) Rotors Stators Surface roughness Test facilities Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A flat-plate tester was used to measure the friction factor behavior for a hole-pattern roughened surface apposed to a smooth surface. The tests were executed to characterize the friction factor behavior of annular seals that use a roughened-surface stator and a smooth rotor. Friction factors were obtained from measurements of the mass flow rate and static pressure measurements along the smooth and roughened surfaces. In addition, dynamic pressure measurements were made at four axial locations at the bottom of individual holes and at facing locations in the smooth plate. The test facility is described, and a procedure for determining the friction factor is reviewed. Three clearances were investigated: 0.635 mm, 0.381 mm, and 0.254 mm. Tests were conducted with air at three different inlet pressures (84 bars, 70 bars, and 55 bars), producing a Reynolds numbers range from 50,000 to 700,000. Three surface configurations were tested, including smooth-on-smooth, smooth-on-hole, and hole-on-hole. The hole-pattern plates are identical with the exception of the hole depth. For the smooth-on-smooth and smooth-on-hole configurations, the friction factor remains largely constant or increases slightly with increasing Reynolds numbers. The friction factor increases as the clearance between the plates increases. The test program was initiated to investigate a friction-factor jump phenomenon cited by Ha et al. (1992, “Friction-Factor Characteristics for Narrow-Channels With Honeycomb Surfaces,” Trans. ASME, J. Tribol., 114, pp. 714–721) in test results from a flat-plate tester where, at elevated values of Reynolds numbers, the friction factor began to increase steadily with increasing Reynolds numbers. They tested apposed honeycomb surfaces. For the present tests, the phenomenon was also observed for tests of apposed roughened surfaces but was not observed for smooth-on-smooth or smooth-on-rough configurations. When the phenomenon was observed, dynamic pressure measurements showed a peak-pressure oscillation at the calculated Helmholtz frequency of the holes. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Friction factor behavior from flat-plate tests of smooth and hole-pattern roughened surfaces with supply pressures up to 84 bars [texte imprimé] / Childs, Dara W., Auteur ; Bassem Kheireddin, Auteur ; Stephen Phillips, Auteur . - 2012 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 10 p.
Mots-clés : Compressors Flow Friction Plates (structures) Rotors Stators Surface roughness Test facilities Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A flat-plate tester was used to measure the friction factor behavior for a hole-pattern roughened surface apposed to a smooth surface. The tests were executed to characterize the friction factor behavior of annular seals that use a roughened-surface stator and a smooth rotor. Friction factors were obtained from measurements of the mass flow rate and static pressure measurements along the smooth and roughened surfaces. In addition, dynamic pressure measurements were made at four axial locations at the bottom of individual holes and at facing locations in the smooth plate. The test facility is described, and a procedure for determining the friction factor is reviewed. Three clearances were investigated: 0.635 mm, 0.381 mm, and 0.254 mm. Tests were conducted with air at three different inlet pressures (84 bars, 70 bars, and 55 bars), producing a Reynolds numbers range from 50,000 to 700,000. Three surface configurations were tested, including smooth-on-smooth, smooth-on-hole, and hole-on-hole. The hole-pattern plates are identical with the exception of the hole depth. For the smooth-on-smooth and smooth-on-hole configurations, the friction factor remains largely constant or increases slightly with increasing Reynolds numbers. The friction factor increases as the clearance between the plates increases. The test program was initiated to investigate a friction-factor jump phenomenon cited by Ha et al. (1992, “Friction-Factor Characteristics for Narrow-Channels With Honeycomb Surfaces,” Trans. ASME, J. Tribol., 114, pp. 714–721) in test results from a flat-plate tester where, at elevated values of Reynolds numbers, the friction factor began to increase steadily with increasing Reynolds numbers. They tested apposed honeycomb surfaces. For the present tests, the phenomenon was also observed for tests of apposed roughened surfaces but was not observed for smooth-on-smooth or smooth-on-rough configurations. When the phenomenon was observed, dynamic pressure measurements showed a peak-pressure oscillation at the calculated Helmholtz frequency of the holes. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Validation of the fuel saving potential of downsized and supercharged hybrid pneumatic engines using vehicle emulation experiments / Christian Dönitz in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 13 p.
Titre : Validation of the fuel saving potential of downsized and supercharged hybrid pneumatic engines using vehicle emulation experiments Type de document : texte imprimé Auteurs : Christian Dönitz, Auteur ; Christoph Voser, Auteur ; Iulian Vasile, Auteur Année de publication : 2012 Article en page(s) : 13 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combustion Internal combustion engines Pneumatic systems Road vehicles Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The pneumatic hybridization of power trains is especially effective when it is combined with strong downsizing and supercharging of spark ignited engines. This paper presents measurement results obtained from such an engine. Specifically, performance measurements for all additional engine modes are shown. The pneumatic motor mode and the pneumatic pump mode are individually optimized over their whole operating range for maximum recuperation efficiency. Jointly with the conventional combustion mode and the pneumatic supercharged mode, they are implemented in one engine control system, thereby enabling the switching between all modes. A dynamometer simulates the longitudinal dynamics of two series production vehicles for the modified engine. This experimental setup, defined as emulation, is used to accurately measure the engine's fuel consumption in the MVEG-95 and federal test procedure (FTP) drive cycles. Causal and noncausal energy management strategies are presented and used for choosing the engine mode during a drive cycle. Fuel savings of up to 35% are measured when comparing the modified engine to the vehicles' standard engines with the same rated power. Hybrid pneumatic vehicles (HPVs) may prove to be a viable alternative to hybrid electric vehicles since fuel savings and driveability are comparable, while the added cost is expected to be substantially lower for HPVs. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Validation of the fuel saving potential of downsized and supercharged hybrid pneumatic engines using vehicle emulation experiments [texte imprimé] / Christian Dönitz, Auteur ; Christoph Voser, Auteur ; Iulian Vasile, Auteur . - 2012 . - 13 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 13 p.
Mots-clés : Combustion Internal combustion engines Pneumatic systems Road vehicles Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The pneumatic hybridization of power trains is especially effective when it is combined with strong downsizing and supercharging of spark ignited engines. This paper presents measurement results obtained from such an engine. Specifically, performance measurements for all additional engine modes are shown. The pneumatic motor mode and the pneumatic pump mode are individually optimized over their whole operating range for maximum recuperation efficiency. Jointly with the conventional combustion mode and the pneumatic supercharged mode, they are implemented in one engine control system, thereby enabling the switching between all modes. A dynamometer simulates the longitudinal dynamics of two series production vehicles for the modified engine. This experimental setup, defined as emulation, is used to accurately measure the engine's fuel consumption in the MVEG-95 and federal test procedure (FTP) drive cycles. Causal and noncausal energy management strategies are presented and used for choosing the engine mode during a drive cycle. Fuel savings of up to 35% are measured when comparing the modified engine to the vehicles' standard engines with the same rated power. Hybrid pneumatic vehicles (HPVs) may prove to be a viable alternative to hybrid electric vehicles since fuel savings and driveability are comparable, while the added cost is expected to be substantially lower for HPVs. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] An experimental investigation of low-octane gasoline in diesel engines / Stephen Ciatti in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 11 p.
Titre : An experimental investigation of low-octane gasoline in diesel engines Type de document : texte imprimé Auteurs : Stephen Ciatti, Auteur ; Swami Nathan Subramanian, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combustion Diesel engines Emission Nitrogen compounds Oxygen compounds Petroleum Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NOx) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NOx and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NOx emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NOx emissions at reasonable high power densities (NOx emission was 1 g/kW h at 12 bar BMEP and 2750 rpm). DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] An experimental investigation of low-octane gasoline in diesel engines [texte imprimé] / Stephen Ciatti, Auteur ; Swami Nathan Subramanian, Auteur . - 2012 . - 11 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 11 p.
Mots-clés : Combustion Diesel engines Emission Nitrogen compounds Oxygen compounds Petroleum Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NOx) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NOx and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NOx emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NOx emissions at reasonable high power densities (NOx emission was 1 g/kW h at 12 bar BMEP and 2750 rpm). DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Optical investigation into wall wetting from late-cycle post-injections used for diesel particulate filter regeneration / Goran Bozic in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 07 p.
Titre : Optical investigation into wall wetting from late-cycle post-injections used for diesel particulate filter regeneration Type de document : texte imprimé Auteurs : Goran Bozic, Auteur ; Sanghoon Kook, Auteur ; Isaac W. Ekoto, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Biofuel Diesel engines Distillation Valves Wetting Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Wall wetting phenomena were investigated in a light-duty diesel optical engine, operating under typical diesel particulate filter regeneration conditions, through the use of liquid spray imaging during late-cycle post-injections. Three post-injection timings were explored: (1) an “early” timing (44.5 deg after top dead center (aTDC)) where high ambient temperatures and densities were expected to decrease the liquid penetration, (2) a “conventional” timing (78.5 deg aTDC) that is typically used to produce the necessary aftertreatment regeneration exhaust conditions, and (3) a “late” timing (133.5 deg aTDC) where in-cylinder flows generated by exhaust valve opening-induced blowdown can disrupt the liquid penetration. In addition to a 2007 U.S. certification diesel fuel, a palm-derived B20 biodiesel blend and a soy-derived B100 biodiesel were examined since liquid spray impingement is thought to worsen for biodiesel blends due to higher fuel distillation temperature, density, and viscosity. No significant wall wetting was observed for the early post-injection. However, considerable impingement occurred for the conventional and late post-injections. Liquid penetration and persistence of liquid fuel in the cylinder were found to increase with biodiesel content, while exhaust blowdown flows were ineffective in reducing the severity of wall wetting. Negligible distortion of jet structure was observed for the liquid spray at the late post-injection. Short pulse durations decreased the severity of liquid penetration with the soy-derived biodiesel during the early post-injection but were otherwise ineffective. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Optical investigation into wall wetting from late-cycle post-injections used for diesel particulate filter regeneration [texte imprimé] / Goran Bozic, Auteur ; Sanghoon Kook, Auteur ; Isaac W. Ekoto, Auteur . - 2012 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 07 p.
Mots-clés : Biofuel Diesel engines Distillation Valves Wetting Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Wall wetting phenomena were investigated in a light-duty diesel optical engine, operating under typical diesel particulate filter regeneration conditions, through the use of liquid spray imaging during late-cycle post-injections. Three post-injection timings were explored: (1) an “early” timing (44.5 deg after top dead center (aTDC)) where high ambient temperatures and densities were expected to decrease the liquid penetration, (2) a “conventional” timing (78.5 deg aTDC) that is typically used to produce the necessary aftertreatment regeneration exhaust conditions, and (3) a “late” timing (133.5 deg aTDC) where in-cylinder flows generated by exhaust valve opening-induced blowdown can disrupt the liquid penetration. In addition to a 2007 U.S. certification diesel fuel, a palm-derived B20 biodiesel blend and a soy-derived B100 biodiesel were examined since liquid spray impingement is thought to worsen for biodiesel blends due to higher fuel distillation temperature, density, and viscosity. No significant wall wetting was observed for the early post-injection. However, considerable impingement occurred for the conventional and late post-injections. Liquid penetration and persistence of liquid fuel in the cylinder were found to increase with biodiesel content, while exhaust blowdown flows were ineffective in reducing the severity of wall wetting. Negligible distortion of jet structure was observed for the liquid spray at the late post-injection. Short pulse durations decreased the severity of liquid penetration with the soy-derived biodiesel during the early post-injection but were otherwise ineffective. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Spark advance real-time optimization based on combustion analysis / Enrico Corti in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 08 p.
Titre : Spark advance real-time optimization based on combustion analysis Type de document : texte imprimé Auteurs : Enrico Corti, Auteur ; Claudio Forte, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combustion equipment Petroleum Sparks Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : One of the most effective factors influencing performance, efficiency, and pollutant emissions of internal combustion engines is the combustion phasing: In gasoline engines, electronic control units (ECUs) manage the spark advance (SA) in order to set the optimal combustion phase. SA is usually optimized on the test bench by changing the ignition angle while monitoring brake mean effective pressure (BMEP) and indicated mean effective pressure (IMEP) and brake specific fuel consumption (BSFC). The optimization process relates BMEP, IMEP, and BSFC mean values with the control setting (SA). However, the effect of SA on combustion is not deterministic due to the cycle-to-cycle variation: The analysis of mean values requires many engine cycles to be significant in the performance obtained with the given control setting. This paper presents a novel approach to SA optimization, with the objective of improving the performance analysis robustness while reducing the test time. For a given running condition, IMEP can be considered a function of the combustion phase, represented by the 50% mass fraction burned (50% MFB). Due to cycle-to-cycle variation, different MFB50 and IMEP values are obtained during a steady state test carried out with constant SA, but these values are related by means of a unique relationship. The distribution on the plane IMEP-MFB50 forms a parabola; therefore, the optimization could be carried out by choosing SA values maintaining the scatter around the vertex. Unfortunately, the distribution shape is slightly influenced by heat losses: This effect must be taken into account in order to avoid overadvanced calibrations. SA is then controlled by means of a proportional-integer-derivative controller, fed by an error that is defined based on previous considerations: A contribution is related to the MFB50-IMEP distribution, and a second contribution is related to the net cumulative heat release-IMEP distribution. The latter is able to take into account for heat losses. First, the methodology has been tested on in-cylinder pressure data, collected from different SI engines; then, it has been implemented in real-time by means of a programmable combustion analyzer: The system performs a cycle-to-cycle combustion analysis, evaluating the combustion parameters necessary to calculate the target SA, which is then actuated by the ECU. The approach proved to be efficient, reducing the number of engine cycles necessary for the calibration to less than 1000 per operating condition. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Spark advance real-time optimization based on combustion analysis [texte imprimé] / Enrico Corti, Auteur ; Claudio Forte, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 08 p.
Mots-clés : Combustion equipment Petroleum Sparks Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : One of the most effective factors influencing performance, efficiency, and pollutant emissions of internal combustion engines is the combustion phasing: In gasoline engines, electronic control units (ECUs) manage the spark advance (SA) in order to set the optimal combustion phase. SA is usually optimized on the test bench by changing the ignition angle while monitoring brake mean effective pressure (BMEP) and indicated mean effective pressure (IMEP) and brake specific fuel consumption (BSFC). The optimization process relates BMEP, IMEP, and BSFC mean values with the control setting (SA). However, the effect of SA on combustion is not deterministic due to the cycle-to-cycle variation: The analysis of mean values requires many engine cycles to be significant in the performance obtained with the given control setting. This paper presents a novel approach to SA optimization, with the objective of improving the performance analysis robustness while reducing the test time. For a given running condition, IMEP can be considered a function of the combustion phase, represented by the 50% mass fraction burned (50% MFB). Due to cycle-to-cycle variation, different MFB50 and IMEP values are obtained during a steady state test carried out with constant SA, but these values are related by means of a unique relationship. The distribution on the plane IMEP-MFB50 forms a parabola; therefore, the optimization could be carried out by choosing SA values maintaining the scatter around the vertex. Unfortunately, the distribution shape is slightly influenced by heat losses: This effect must be taken into account in order to avoid overadvanced calibrations. SA is then controlled by means of a proportional-integer-derivative controller, fed by an error that is defined based on previous considerations: A contribution is related to the MFB50-IMEP distribution, and a second contribution is related to the net cumulative heat release-IMEP distribution. The latter is able to take into account for heat losses. First, the methodology has been tested on in-cylinder pressure data, collected from different SI engines; then, it has been implemented in real-time by means of a programmable combustion analyzer: The system performs a cycle-to-cycle combustion analysis, evaluating the combustion parameters necessary to calculate the target SA, which is then actuated by the ECU. The approach proved to be efficient, reducing the number of engine cycles necessary for the calibration to less than 1000 per operating condition. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Modeling species inhibition of NO oxidation in urea-SCR catalysts for diesel engine NOx control / Maruthi Devarakonda in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 06 p.
Titre : Modeling species inhibition of NO oxidation in urea-SCR catalysts for diesel engine NOx control Type de document : texte imprimé Auteurs : Maruthi Devarakonda, Auteur ; Russell Tonkyn, Auteur ; Diana Tran, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Catalysts Diesel engines Nitrogen compounds Pyrolysis Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons, and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO~NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on the conservation of species equations and was coded as a C-language S-function and implemented in MATLAB/SIMULINK environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate's storage in the Fe–zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of the model based control design for integrated diesel particulate filter-SCR aftertreatment systems. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Modeling species inhibition of NO oxidation in urea-SCR catalysts for diesel engine NOx control [texte imprimé] / Maruthi Devarakonda, Auteur ; Russell Tonkyn, Auteur ; Diana Tran, Auteur . - 2012 . - 06 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 06 p.
Mots-clés : Catalysts Diesel engines Nitrogen compounds Pyrolysis Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons, and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO~NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on the conservation of species equations and was coded as a C-language S-function and implemented in MATLAB/SIMULINK environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate's storage in the Fe–zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of the model based control design for integrated diesel particulate filter-SCR aftertreatment systems. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine / C. M. Gibson in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Titre : Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine Type de document : texte imprimé Auteurs : C. M. Gibson, Auteur ; A. C. Polk, Auteur ; N. T. Shoemaker, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Diesel engines Dual fuel engines Fuel systems Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : With increasingly restrictive NOx and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7–11.6 bars) and percent energy substitutions (PESs) of C3H8 and CH4. Brake thermal efficiencies (BTEs) and emissions (NOx, smoke, total hydrocarbons (THCs), CO, and CO2) were measured. Maximum PES levels of about 80–95% with CH4 and 40–92% with C3H8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C3H8 and CH4, and the onset of knock above 9 bar BMEP for C3H8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NOx and smoke reductions (from diesel values) were as high as 66–68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine [texte imprimé] / C. M. Gibson, Auteur ; A. C. Polk, Auteur ; N. T. Shoemaker, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 09 p.
Mots-clés : Diesel engines Dual fuel engines Fuel systems Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : With increasingly restrictive NOx and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7–11.6 bars) and percent energy substitutions (PESs) of C3H8 and CH4. Brake thermal efficiencies (BTEs) and emissions (NOx, smoke, total hydrocarbons (THCs), CO, and CO2) were measured. Maximum PES levels of about 80–95% with CH4 and 40–92% with C3H8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C3H8 and CH4, and the onset of knock above 9 bar BMEP for C3H8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NOx and smoke reductions (from diesel values) were as high as 66–68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] A one-dimensional numerical model for the momentum exchange in regenerative pumps / Francis J. Quail in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 07 p.
Titre : A one-dimensional numerical model for the momentum exchange in regenerative pumps Type de document : texte imprimé Auteurs : Francis J. Quail, Auteur ; Matthew Stickland, Auteur ; Armin Baumgartner, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Pumps Regenerative braking Rotors Turbomachinery Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The regenerative pump is a rotor-dynamic turbomachine capable of developing high heads at low flow rates and low specific speeds. In spite of their low efficiency, usually less than 50%, they have found a wide range of applications as compact single-stage pumps with other beneficial features. The potential of a modified regenerative pump design is presented for the consideration of the performance improvements. In this paper the fluid dynamic behavior of the novel design was predicted using a one-dimensional model developed by the authors. Unlike most one-dimensional models previously published for regenerative pumps, the momentum exchange is numerically computed. Previous one-dimensional models relied on experimental data and correction factors; the model presented in this paper demonstrates an accurate prediction of the pump performance characteristics without the need for correction with experimental data. The validity of this approach is highlighted by the comparison of computed and measured results for two different regenerative pump standards. The pump performance is numerically assessed without the need of correction factors or other experimental data. This paper presents an approach for regenerative pumps using a physically valid geometry model and by resolving the circulatory velocity in the peripheral direction. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] A one-dimensional numerical model for the momentum exchange in regenerative pumps [texte imprimé] / Francis J. Quail, Auteur ; Matthew Stickland, Auteur ; Armin Baumgartner, Auteur . - 2012 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 07 p.
Mots-clés : Pumps Regenerative braking Rotors Turbomachinery Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The regenerative pump is a rotor-dynamic turbomachine capable of developing high heads at low flow rates and low specific speeds. In spite of their low efficiency, usually less than 50%, they have found a wide range of applications as compact single-stage pumps with other beneficial features. The potential of a modified regenerative pump design is presented for the consideration of the performance improvements. In this paper the fluid dynamic behavior of the novel design was predicted using a one-dimensional model developed by the authors. Unlike most one-dimensional models previously published for regenerative pumps, the momentum exchange is numerically computed. Previous one-dimensional models relied on experimental data and correction factors; the model presented in this paper demonstrates an accurate prediction of the pump performance characteristics without the need for correction with experimental data. The validity of this approach is highlighted by the comparison of computed and measured results for two different regenerative pump standards. The pump performance is numerically assessed without the need of correction factors or other experimental data. This paper presents an approach for regenerative pumps using a physically valid geometry model and by resolving the circulatory velocity in the peripheral direction. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Modeling of the constitutive behavior of inconel 718 at intermediate temperatures / D. Gustafsson in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 04 p.
Titre : Modeling of the constitutive behavior of inconel 718 at intermediate temperatures Type de document : texte imprimé Auteurs : D. Gustafsson, Auteur ; J. J. Moverare, Auteur ; K. Simonsson, Auteur Année de publication : 2012 Article en page(s) : 04 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Chromium alloys Fatigue cracks Gas turbines Hardening Nickel alloys Softening Stress relaxation Stress-strain relations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Turbine disks are of large importance to turbine designers as they are exposed to hot environment and subjected to high loads. In order to analyze such components with respect to fatigue crack initiation, the work generally starts with a rigorous analysis of the first few cycles, during which an important stress redistribution will always take place in an inelastic structure. In this work, the nonlinear kinematic hardening law by Ohno and Wang (1998, “Constitutive Modeling of Cyclic Plasticity With Emphasis on Ratchetting,” Int. J. Mech. Sci., 40, pp. 251–261) has been used in combination with an isotropic softening law for describing the initial stress-strain distribution for strain controlled uniaxial tests of the material Inconel 718. Focus has been placed on finding a simple model with few material parameters and to describe the initial softening and the comparatively small mean stress relaxation observed during the material testing. The simulation results obtained by using the model fit the experimental results well. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Modeling of the constitutive behavior of inconel 718 at intermediate temperatures [texte imprimé] / D. Gustafsson, Auteur ; J. J. Moverare, Auteur ; K. Simonsson, Auteur . - 2012 . - 04 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 04 p.
Mots-clés : Chromium alloys Fatigue cracks Gas turbines Hardening Nickel alloys Softening Stress relaxation Stress-strain relations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Turbine disks are of large importance to turbine designers as they are exposed to hot environment and subjected to high loads. In order to analyze such components with respect to fatigue crack initiation, the work generally starts with a rigorous analysis of the first few cycles, during which an important stress redistribution will always take place in an inelastic structure. In this work, the nonlinear kinematic hardening law by Ohno and Wang (1998, “Constitutive Modeling of Cyclic Plasticity With Emphasis on Ratchetting,” Int. J. Mech. Sci., 40, pp. 251–261) has been used in combination with an isotropic softening law for describing the initial stress-strain distribution for strain controlled uniaxial tests of the material Inconel 718. Focus has been placed on finding a simple model with few material parameters and to describe the initial softening and the comparatively small mean stress relaxation observed during the material testing. The simulation results obtained by using the model fit the experimental results well. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]
Exemplaires
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
aucun exemplaire |