Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Transactions of the ASME . Journal of fluids engineering / White, Frank M. . Vol. 134 N° 7Journal of fluids engineeringMention de date : Juillet 2012 Paru le : 21/10/2012 |
Dépouillements
Ajouter le résultat dans votre panierStudy of near-stall flow behavior in a modern transonic fan with compound sweep / Chunill Hah in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 07 p.
Titre : Study of near-stall flow behavior in a modern transonic fan with compound sweep Type de document : texte imprimé Auteurs : Chunill Hah, Auteur ; Hyoun-Woo Shin, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : flow behavior; transonic fan; sweep; Reynolds-averaged Navier-Stokes (URANS); large eddy simulation (LES) methods Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Detailed flow behavior in a modern transonic fan with a compound sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and large eddy simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of compound sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured rms static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with compound sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Study of near-stall flow behavior in a modern transonic fan with compound sweep [texte imprimé] / Chunill Hah, Auteur ; Hyoun-Woo Shin, Auteur . - 2012 . - 07 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 07 p.
Mots-clés : flow behavior; transonic fan; sweep; Reynolds-averaged Navier-Stokes (URANS); large eddy simulation (LES) methods Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Detailed flow behavior in a modern transonic fan with a compound sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and large eddy simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of compound sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured rms static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with compound sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Numerical investigations and performance experiments of a deep-well centrifugal pump with different diffusers / Ling Zhou in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 08 p.
Titre : Numerical investigations and performance experiments of a deep-well centrifugal pump with different diffusers Type de document : texte imprimé Auteurs : Ling Zhou, Auteur ; Weidong Shi, Auteur ; Weigang Lu, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : deep-well centrifugal pump; return diffuser; numarical simulation; efficiency Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In this paper, the design methodology of a new type of three-dimensional surface return diffuser (3DRD) is presented and described in detail. The main goal was to improve the hydrodynamic performance of the deep-well centrifugal pump (DCP). During this study, a two-stage DCP equipped with two different type diffusers was simulated employing the commercial computational fluid dynamics (CFD) software ANYSY-Fluent to solve the Navier-Stokes equations for three-dimensional steady flow. A sensitivity analysis of the numerical model was performed in order to impose appropriate parameters regarding grid elements number and turbulence model. The flow field and the static pressure distribution in the diffusers obtained by numerical simulation were analyzed, and the diffuser efficiency was defined to quantify the pressure conversion capability. The prototype experimental test results were acquired and compared with the data predicted from the numerical simulation, which showed that the performance of the pump with 3DRD is better than that of the traditional cylindrical return diffuser (CRD) under all operating conditions. The efficiency and single-stage head of the pump with 3DRD have been significantly improved compared with the standard DCP of the same class. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Numerical investigations and performance experiments of a deep-well centrifugal pump with different diffusers [texte imprimé] / Ling Zhou, Auteur ; Weidong Shi, Auteur ; Weigang Lu, Auteur . - 2012 . - 08 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 08 p.
Mots-clés : deep-well centrifugal pump; return diffuser; numarical simulation; efficiency Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In this paper, the design methodology of a new type of three-dimensional surface return diffuser (3DRD) is presented and described in detail. The main goal was to improve the hydrodynamic performance of the deep-well centrifugal pump (DCP). During this study, a two-stage DCP equipped with two different type diffusers was simulated employing the commercial computational fluid dynamics (CFD) software ANYSY-Fluent to solve the Navier-Stokes equations for three-dimensional steady flow. A sensitivity analysis of the numerical model was performed in order to impose appropriate parameters regarding grid elements number and turbulence model. The flow field and the static pressure distribution in the diffusers obtained by numerical simulation were analyzed, and the diffuser efficiency was defined to quantify the pressure conversion capability. The prototype experimental test results were acquired and compared with the data predicted from the numerical simulation, which showed that the performance of the pump with 3DRD is better than that of the traditional cylindrical return diffuser (CRD) under all operating conditions. The efficiency and single-stage head of the pump with 3DRD have been significantly improved compared with the standard DCP of the same class. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Characteristics of mean droplet size produced by spinning disk atomizers / Mahmoud Ahmed in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 09 p.
Titre : Characteristics of mean droplet size produced by spinning disk atomizers Type de document : texte imprimé Auteurs : Mahmoud Ahmed, Auteur ; M. S. Youssef, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : rotary disks spray atomization; phase doppler particle analyser; sauter mean diameter Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Characteristics of mean droplet size of spray produced by spinning disk atomizers were experimentally investigated. The phase-doppler particle analyzer (PDPA) was used to measure the droplet size of water spray in the downstream distance along the spray trajectory. Effects of various operating conditions on the mean diameter had been studied. The studied variables were: the rotational speed in the range of 838 to 1677 rad/s (8,000–16,000 rpm), the liquid flow rate in the range of 0.56 to 2.8 × 10−6 m3/s (2–10 L/h), the disk diameter in the range of 0.04 to 0.12 m, and the downstream tangential distance along the spray trajectory of up to 0. 24 m. The Sauter mean diameter (d32) was used to represent the mean of generated spray droplet sizes. The results indicated that the Sauter mean diameter can be correlated with dimensionless groups, such as the Reynolds number, Weber number, flow coefficient, and the ratio of downstream distance to disk diameter. Based on this correlation, it was found that the Sauter mean diameter (d32) increases as the downstream tangential distance, and liquid flow rate increase. Similarly, a decrease of rotational speed and disk diameter results in an increase in the Sauter mean diameter (d32). A comparison between the developed correlation and correlations obtained by other researchers has been presented and discussed in detail. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Characteristics of mean droplet size produced by spinning disk atomizers [texte imprimé] / Mahmoud Ahmed, Auteur ; M. S. Youssef, Auteur . - 2012 . - 09 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 09 p.
Mots-clés : rotary disks spray atomization; phase doppler particle analyser; sauter mean diameter Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Characteristics of mean droplet size of spray produced by spinning disk atomizers were experimentally investigated. The phase-doppler particle analyzer (PDPA) was used to measure the droplet size of water spray in the downstream distance along the spray trajectory. Effects of various operating conditions on the mean diameter had been studied. The studied variables were: the rotational speed in the range of 838 to 1677 rad/s (8,000–16,000 rpm), the liquid flow rate in the range of 0.56 to 2.8 × 10−6 m3/s (2–10 L/h), the disk diameter in the range of 0.04 to 0.12 m, and the downstream tangential distance along the spray trajectory of up to 0. 24 m. The Sauter mean diameter (d32) was used to represent the mean of generated spray droplet sizes. The results indicated that the Sauter mean diameter can be correlated with dimensionless groups, such as the Reynolds number, Weber number, flow coefficient, and the ratio of downstream distance to disk diameter. Based on this correlation, it was found that the Sauter mean diameter (d32) increases as the downstream tangential distance, and liquid flow rate increase. Similarly, a decrease of rotational speed and disk diameter results in an increase in the Sauter mean diameter (d32). A comparison between the developed correlation and correlations obtained by other researchers has been presented and discussed in detail. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Analysis and optimization of a vaned diffuser in a mixed flow pump to improve hydrodynamic performance / Jin-Hyuk Kim in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 10 p.
Titre : Analysis and optimization of a vaned diffuser in a mixed flow pump to improve hydrodynamic performance Type de document : texte imprimé Auteurs : Jin-Hyuk Kim, Auteur ; Kwang-Yong Kim, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : miwed-flow pump; vaned diffuser; numerical optimization; efficiency; radial basis neural network; Reynolds-averaged Navier-Stokes equations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Hydrodynamic analysis and an optimization of a vaned diffuser in a mixed-flow pump are performed in this work. Numerical analysis is carried out by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. A validation of numerical results is conducted by comparison with experimental data for the head, power, and efficiency. An optimization process based on a radial basis neural network model is performed with four design variables that define the straight vane length ratio, the diffusion area ratio, the angle at the diffuser vane tip, and the distance ratio between the impeller blade trailing edge and the diffuser vane leading edge. Efficiency as a hydrodynamic performance parameter is selected as the objective function for optimization. The objective function is numerically assessed at design points selected by Latin hypercube sampling in the design space. The optimization yielded a maximum increase in efficiency of 9.75% at the design flow coefficient compared to a reference design. The performance curve for efficiency was also enhanced in the high flow rate region. Detailed internal flow fields between the reference and optimum designs are analyzed and discussed. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Analysis and optimization of a vaned diffuser in a mixed flow pump to improve hydrodynamic performance [texte imprimé] / Jin-Hyuk Kim, Auteur ; Kwang-Yong Kim, Auteur . - 2012 . - 10 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 10 p.
Mots-clés : miwed-flow pump; vaned diffuser; numerical optimization; efficiency; radial basis neural network; Reynolds-averaged Navier-Stokes equations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Hydrodynamic analysis and an optimization of a vaned diffuser in a mixed-flow pump are performed in this work. Numerical analysis is carried out by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. A validation of numerical results is conducted by comparison with experimental data for the head, power, and efficiency. An optimization process based on a radial basis neural network model is performed with four design variables that define the straight vane length ratio, the diffusion area ratio, the angle at the diffuser vane tip, and the distance ratio between the impeller blade trailing edge and the diffuser vane leading edge. Efficiency as a hydrodynamic performance parameter is selected as the objective function for optimization. The objective function is numerically assessed at design points selected by Latin hypercube sampling in the design space. The optimization yielded a maximum increase in efficiency of 9.75% at the design flow coefficient compared to a reference design. The performance curve for efficiency was also enhanced in the high flow rate region. Detailed internal flow fields between the reference and optimum designs are analyzed and discussed. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Three-dimensional effects on an oscillating-foil hydrokinetic turbine / Thomas Kinsey in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 11 p.
Titre : Three-dimensional effects on an oscillating-foil hydrokinetic turbine Type de document : texte imprimé Auteurs : Thomas Kinsey, Auteur ; Guy Dumas, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : three-dimensional hydrodynamic losses; foil oscillating sinusoidally; unsteady Reynolds-Averaged-Navier-Stokes (URANS) solver Résumé : Three-dimensional hydrodynamic losses are assessed in this investigation for a foil oscillating sinusoidally in a combined heave and pitch motion with large amplitudes. Simulations are performed using a unsteady Reynolds-Averaged-Navier-Stokes (URANS) solver on an oscillating foil in a power-extraction mode; thus acting as a hydrokinetic turbine at high Reynolds number. Foils of various aspect ratios (span to chord length ratio) are considered, both with and without endplates for one representative operation point. Hydrodynamic forces and extracted power are compared with results from the equivalent two-dimensional (2D) computations. It is found that the relative drop of performance (cycle-averaged power extracted) due to 3D hydrodynamic losses can be limited to 10% of the 2D prediction when endplates are used on a foil of aspect ratio greater than ten. The practical consideration of an oscillating-foil hydrokinetic turbine operating in an imperfectly-aligned upstream water flow is also addressed with simulations considering an upstream flow at a yaw angle up to 30° with respect to the foil chord line. Effects on performance are found to be proportional to the projected kinetic energy flux. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Three-dimensional effects on an oscillating-foil hydrokinetic turbine [texte imprimé] / Thomas Kinsey, Auteur ; Guy Dumas, Auteur . - 2012 . - 11 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 11 p.
Mots-clés : three-dimensional hydrodynamic losses; foil oscillating sinusoidally; unsteady Reynolds-Averaged-Navier-Stokes (URANS) solver Résumé : Three-dimensional hydrodynamic losses are assessed in this investigation for a foil oscillating sinusoidally in a combined heave and pitch motion with large amplitudes. Simulations are performed using a unsteady Reynolds-Averaged-Navier-Stokes (URANS) solver on an oscillating foil in a power-extraction mode; thus acting as a hydrokinetic turbine at high Reynolds number. Foils of various aspect ratios (span to chord length ratio) are considered, both with and without endplates for one representative operation point. Hydrodynamic forces and extracted power are compared with results from the equivalent two-dimensional (2D) computations. It is found that the relative drop of performance (cycle-averaged power extracted) due to 3D hydrodynamic losses can be limited to 10% of the 2D prediction when endplates are used on a foil of aspect ratio greater than ten. The practical consideration of an oscillating-foil hydrokinetic turbine operating in an imperfectly-aligned upstream water flow is also addressed with simulations considering an upstream flow at a yaw angle up to 30° with respect to the foil chord line. Effects on performance are found to be proportional to the projected kinetic energy flux. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Parametric study of dynamic stall flow field with synthetic jet actuation / Joshua Yen in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 08 p.
Titre : Parametric study of dynamic stall flow field with synthetic jet actuation Type de document : texte imprimé Auteurs : Joshua Yen, Auteur ; Noor A. Ahmed, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : dynamic stall; unsteady flow; synthetic jet; spectral analysis Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A parametric study of the interaction between dynamic stall and a zero-net mass flux synthetic jet installed on a wing was investigated by identifying the dominant frequencies in the resulting flow field using spectral analysis. The instantaneous pressure distribution around an NACA 0020 wing was recorded by performing static and dynamic experiments using an open jet subsonic wind tunnel located at the aerodynamics laboratory of the University of New South Wales. The results obtained provided valuable insight into the interaction process. The oscillation frequency and its harmonics were identified in baseline dynamic experiments, as well as the jet frequency and offset frequencies with synthetic jet actuation. The offset frequencies, similar to beat frequencies, were found to be a dynamic effect and represented the complex and nonlinear interaction between dynamic stall and the synthetic jet. The study suggests that low amplitude synthetic jet actuation would be an effective method in enhancing the overall aerodynamic efficiency of the wing. This confirmed the viability of utilizing synthetic jets in dynamic stall control. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Parametric study of dynamic stall flow field with synthetic jet actuation [texte imprimé] / Joshua Yen, Auteur ; Noor A. Ahmed, Auteur . - 2012 . - 08 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 08 p.
Mots-clés : dynamic stall; unsteady flow; synthetic jet; spectral analysis Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A parametric study of the interaction between dynamic stall and a zero-net mass flux synthetic jet installed on a wing was investigated by identifying the dominant frequencies in the resulting flow field using spectral analysis. The instantaneous pressure distribution around an NACA 0020 wing was recorded by performing static and dynamic experiments using an open jet subsonic wind tunnel located at the aerodynamics laboratory of the University of New South Wales. The results obtained provided valuable insight into the interaction process. The oscillation frequency and its harmonics were identified in baseline dynamic experiments, as well as the jet frequency and offset frequencies with synthetic jet actuation. The offset frequencies, similar to beat frequencies, were found to be a dynamic effect and represented the complex and nonlinear interaction between dynamic stall and the synthetic jet. The study suggests that low amplitude synthetic jet actuation would be an effective method in enhancing the overall aerodynamic efficiency of the wing. This confirmed the viability of utilizing synthetic jets in dynamic stall control. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Computational analysis of marine-propeller performance using transition-sensitive turbulence modeling / Xiao Wang in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 10 p.
Titre : Computational analysis of marine-propeller performance using transition-sensitive turbulence modeling Type de document : texte imprimé Auteurs : Xiao Wang, Auteur ; Keith Walters, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : computational fluid dynamics (CFD) simulations; marine propellers; turbulence models Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Almost all computational fluid dynamics (CFD) simulations of flow around marine propellers use turbulence models that are only well suited for fully turbulent flows, which in some cases may lead to accuracy degradation in the prediction of propeller performance characteristics. The discrepancy between computed thrust and torque and corresponding experimental data increases with increasing propeller load. This is due in part to the fact that a large laminar flow region is found to exist and turbulence transition takes place on propeller blades of model scale and/or under high-load conditions. In these cases, it may be necessary to consider boundary-layer transition to obtain accurate results from CFD simulations. The objective of this work is to perform simulations of a marine propeller using a transition-sensitive turbulence model to better resolve the propeller flow characteristics. Fully turbulent flow simulations are also performed for comparison purposes at various propeller load conditions. Computational results are analyzed and compared with water-tunnel and open-water experimental data. It is found that the applied transition-sensitive turbulence model is better able to resolve blade-surface stresses, flow separations, and tip-vortex originations, and, consequently, improve the prediction accuracy in propeller performance, especially under high-load conditions. Furthermore, solutions obtained using the transition-sensitive turbulence model show tip-vortex flows of higher strength, whereas results by the standard k-omega SST turbulence model indicate excessive dissipation of the vortex core. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Computational analysis of marine-propeller performance using transition-sensitive turbulence modeling [texte imprimé] / Xiao Wang, Auteur ; Keith Walters, Auteur . - 2012 . - 10 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 10 p.
Mots-clés : computational fluid dynamics (CFD) simulations; marine propellers; turbulence models Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Almost all computational fluid dynamics (CFD) simulations of flow around marine propellers use turbulence models that are only well suited for fully turbulent flows, which in some cases may lead to accuracy degradation in the prediction of propeller performance characteristics. The discrepancy between computed thrust and torque and corresponding experimental data increases with increasing propeller load. This is due in part to the fact that a large laminar flow region is found to exist and turbulence transition takes place on propeller blades of model scale and/or under high-load conditions. In these cases, it may be necessary to consider boundary-layer transition to obtain accurate results from CFD simulations. The objective of this work is to perform simulations of a marine propeller using a transition-sensitive turbulence model to better resolve the propeller flow characteristics. Fully turbulent flow simulations are also performed for comparison purposes at various propeller load conditions. Computational results are analyzed and compared with water-tunnel and open-water experimental data. It is found that the applied transition-sensitive turbulence model is better able to resolve blade-surface stresses, flow separations, and tip-vortex originations, and, consequently, improve the prediction accuracy in propeller performance, especially under high-load conditions. Furthermore, solutions obtained using the transition-sensitive turbulence model show tip-vortex flows of higher strength, whereas results by the standard k-omega SST turbulence model indicate excessive dissipation of the vortex core. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Numerical prediction of wind flow around irregular models / D. Y. Wang in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 11 p.
Titre : Numerical prediction of wind flow around irregular models Type de document : texte imprimé Auteurs : D. Y. Wang, Auteur ; Y. Zhou, Auteur ; Y. Zhu, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : numerical prediction; large Eddy simulation; irregular-plan buildings; computational fluid dynamics; wind pressure coefficient; wind velocity profile Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents numerical predictions of flow around irregular-plan buildings (S-, R-, L- and U-shaped models) in high Reynolds number. The adopted computational approach and numerical models are described firstly. Then comparative analysis with the numerical and experimental data has been conducted to verify the reliability of the numerical predictions. Finally, characteristics of mean and fluctuating pressure distributions and vertical and lateral velocity profiles of the flow around the four models have been investigated and assessed thoroughly. The study shows that satisfactory results can be obtained by large eddy simulation (LES), especially when fluctuating wind velocity is considered in the inflow boundary. Distribution of mean pressure coefficients on front faces is relatively regular. Large fluctuating pressure coefficients are induced by strong vortex motion. Velocity profiles of wind flow are disturbed obviously among the four building models, especially in weak flow. The disturbed intensity decreases with increasing of the distance away from bluff body. The suggested MDS (Maximum Disturbance Scopes) away from bluff body are generally 0.25H in inflow zones, 0.4H in roof zones, 0.5H in both side zones and 3H in weak zones. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Numerical prediction of wind flow around irregular models [texte imprimé] / D. Y. Wang, Auteur ; Y. Zhou, Auteur ; Y. Zhu, Auteur . - 2012 . - 11 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 11 p.
Mots-clés : numerical prediction; large Eddy simulation; irregular-plan buildings; computational fluid dynamics; wind pressure coefficient; wind velocity profile Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents numerical predictions of flow around irregular-plan buildings (S-, R-, L- and U-shaped models) in high Reynolds number. The adopted computational approach and numerical models are described firstly. Then comparative analysis with the numerical and experimental data has been conducted to verify the reliability of the numerical predictions. Finally, characteristics of mean and fluctuating pressure distributions and vertical and lateral velocity profiles of the flow around the four models have been investigated and assessed thoroughly. The study shows that satisfactory results can be obtained by large eddy simulation (LES), especially when fluctuating wind velocity is considered in the inflow boundary. Distribution of mean pressure coefficients on front faces is relatively regular. Large fluctuating pressure coefficients are induced by strong vortex motion. Velocity profiles of wind flow are disturbed obviously among the four building models, especially in weak flow. The disturbed intensity decreases with increasing of the distance away from bluff body. The suggested MDS (Maximum Disturbance Scopes) away from bluff body are generally 0.25H in inflow zones, 0.4H in roof zones, 0.5H in both side zones and 3H in weak zones. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Analysis of Brinkman-extended darcy flow in porous media and experimental verification using metal foam / Nihad Dukhan in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 06 p.
Titre : Analysis of Brinkman-extended darcy flow in porous media and experimental verification using metal foam Type de document : texte imprimé Auteurs : Nihad Dukhan, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : Brinkman; porous media; velocity profile; pressure drop; metal foam Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Momentum transport in porous media exists in numerous engineering and process applications, e.g., ground water pollution, storage of nuclear waste, heat exchangers, and chemical reactors. In many of such applications, the porous medium is confined by solid boundaries. These impermeable boundaries give rise to shear stress and boundary layers. The Brinkman-extended Darcy equation describes the momentum transport due to Newtonian fluid flow in confined porous media. This equation is solved analytically in a cylindrical system, employing an existing fully-developed boundary-layer concept particular to porous media flows. The volume-averaged velocity increases as the distance from the boundary increases reaching a maximum at the center. The mean and maximum velocities are obtained and their behavior is investigated in terms of pertinent flow parameters. The friction factor is defined based on the mean velocity and is found to be inversely proportional to the Reynolds number, the Darcy number, and the mean velocity. The analytical results are verified by experiments using two types of metal foam. In the Darcy regime, reasonably good agreement is found between the analytical and the experimental friction factors for the 20-pore-per-inch foam, while a poor agreement is found for the 10-pore-per-inch foam. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Analysis of Brinkman-extended darcy flow in porous media and experimental verification using metal foam [texte imprimé] / Nihad Dukhan, Auteur . - 2012 . - 06 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 06 p.
Mots-clés : Brinkman; porous media; velocity profile; pressure drop; metal foam Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Momentum transport in porous media exists in numerous engineering and process applications, e.g., ground water pollution, storage of nuclear waste, heat exchangers, and chemical reactors. In many of such applications, the porous medium is confined by solid boundaries. These impermeable boundaries give rise to shear stress and boundary layers. The Brinkman-extended Darcy equation describes the momentum transport due to Newtonian fluid flow in confined porous media. This equation is solved analytically in a cylindrical system, employing an existing fully-developed boundary-layer concept particular to porous media flows. The volume-averaged velocity increases as the distance from the boundary increases reaching a maximum at the center. The mean and maximum velocities are obtained and their behavior is investigated in terms of pertinent flow parameters. The friction factor is defined based on the mean velocity and is found to be inversely proportional to the Reynolds number, the Darcy number, and the mean velocity. The analytical results are verified by experiments using two types of metal foam. In the Darcy regime, reasonably good agreement is found between the analytical and the experimental friction factors for the 20-pore-per-inch foam, while a poor agreement is found for the 10-pore-per-inch foam. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] An experimental study on the oblique collisions of water droplets with a smooth hot solid / Hiroshi Fujimoto in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 12 p.
Titre : An experimental study on the oblique collisions of water droplets with a smooth hot solid Type de document : texte imprimé Auteurs : Hiroshi Fujimoto, Auteur ; Ryota Doi, Auteur ; Hirohiko Takuda, Auteur Année de publication : 2012 Article en page(s) : 12 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : oblique collision; weber number; two-directional flash photography; dynamical similarity; droplet Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The motions of liquid droplets impinging on a solid substrate have been studied experimentally in fundamental research on various types of industrial applications, including spray cooling. The oblique collision of a single water droplet with a hot Inconel 625 alloy surface has been investigated by means of a two-directional flash photography technique that uses two digital still cameras and three flash units. The experiments were conducted under the following conditions. The preimpact diameter of the droplets was approximately 0.6 mm, the impact velocity was 1.9–3.1 m/s, and the temperature of the Inconel 625 alloy surface ranged from 170 °C to 500 °C. The impact angle of droplets on the solid surface was in the range 45 deg–90 deg. Experiments using 2.5 mm diameter droplets at an impact velocity of 0.84–1.4 m/s were also conducted at the surface temperature of 500 °C. At surface temperatures of 200 °C, 300 °C, and 400 °C, the droplet deforms into an asymmetric shape and moves downward along the tilted surface. Numerous secondary droplets jet upward from the deforming droplet as a result of the blowout of vapor bubbles into the atmosphere. At a surface temperature of 500 °C and a low Weber number Wen based on the normal velocity component to the solid surface, no secondary droplets are observed. The droplet rebounds off the solid without disintegrating. The droplet becomes almost axisymmetric in shape during the collision regardless of the impact angle. The dimensionless collision behaviors of large and small droplets were similar for the same Wen when the temperature was 500 °C. Using Wen, we investigated the deformation characteristics of droplets in oblique collisions. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] An experimental study on the oblique collisions of water droplets with a smooth hot solid [texte imprimé] / Hiroshi Fujimoto, Auteur ; Ryota Doi, Auteur ; Hirohiko Takuda, Auteur . - 2012 . - 12 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 12 p.
Mots-clés : oblique collision; weber number; two-directional flash photography; dynamical similarity; droplet Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The motions of liquid droplets impinging on a solid substrate have been studied experimentally in fundamental research on various types of industrial applications, including spray cooling. The oblique collision of a single water droplet with a hot Inconel 625 alloy surface has been investigated by means of a two-directional flash photography technique that uses two digital still cameras and three flash units. The experiments were conducted under the following conditions. The preimpact diameter of the droplets was approximately 0.6 mm, the impact velocity was 1.9–3.1 m/s, and the temperature of the Inconel 625 alloy surface ranged from 170 °C to 500 °C. The impact angle of droplets on the solid surface was in the range 45 deg–90 deg. Experiments using 2.5 mm diameter droplets at an impact velocity of 0.84–1.4 m/s were also conducted at the surface temperature of 500 °C. At surface temperatures of 200 °C, 300 °C, and 400 °C, the droplet deforms into an asymmetric shape and moves downward along the tilted surface. Numerous secondary droplets jet upward from the deforming droplet as a result of the blowout of vapor bubbles into the atmosphere. At a surface temperature of 500 °C and a low Weber number Wen based on the normal velocity component to the solid surface, no secondary droplets are observed. The droplet rebounds off the solid without disintegrating. The droplet becomes almost axisymmetric in shape during the collision regardless of the impact angle. The dimensionless collision behaviors of large and small droplets were similar for the same Wen when the temperature was 500 °C. Using Wen, we investigated the deformation characteristics of droplets in oblique collisions. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Fish injury and mortality during passage through pumping stations / B. P. M. van Esch in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 09 p.
Titre : Fish injury and mortality during passage through pumping stations Type de document : texte imprimé Auteurs : B. P. M. van Esch, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : fish; centrifugal pumps; computational fluid dynamics (CFD) Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An unwanted side effect of pumping stations is that fish suffer from injury and mortality when passing through the pumps and that fish migration is hampered. In recent years, the development of so-called fish-friendly pumping stations has received increasing attention from European governmental institutions and pump manufacturers. In the Netherlands, many field studies have been conducted over the last decade to assess the chances of survival for fish passing through pumps. A clear correlation between observed injury or mortality and, for example, flow rate, shaft speed, or pump type could not be established. This paper presents a new analysis of these field studies. It uses American studies on the biological criteria for fish injury, the most important of which are pressure changes, shear forces, and mechanical injury. A blade strike model is adapted to fish passing through centrifugal pumps of radial, mixed-flow, and axial type. It reveals the relation between fish injury and the type of pump, its size, shaft speed, and pressure head. The results correlate fairly well with experiments. The flow through a typical mixed-flow pump is calculated using computational fluid dynamics (CFD). The results show that pressure fluctuations and shear forces are not likely to add much to fish mortality. Guidelines for the design and selection of fish-friendly pumps are given with the introduction of two new dimensionless numbers: the blade strike probability factor and the blade strike velocity factor. It shows that fish-friendliness of pumps decreases with increasing specific speed value. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Fish injury and mortality during passage through pumping stations [texte imprimé] / B. P. M. van Esch, Auteur . - 2012 . - 09 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 09 p.
Mots-clés : fish; centrifugal pumps; computational fluid dynamics (CFD) Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An unwanted side effect of pumping stations is that fish suffer from injury and mortality when passing through the pumps and that fish migration is hampered. In recent years, the development of so-called fish-friendly pumping stations has received increasing attention from European governmental institutions and pump manufacturers. In the Netherlands, many field studies have been conducted over the last decade to assess the chances of survival for fish passing through pumps. A clear correlation between observed injury or mortality and, for example, flow rate, shaft speed, or pump type could not be established. This paper presents a new analysis of these field studies. It uses American studies on the biological criteria for fish injury, the most important of which are pressure changes, shear forces, and mechanical injury. A blade strike model is adapted to fish passing through centrifugal pumps of radial, mixed-flow, and axial type. It reveals the relation between fish injury and the type of pump, its size, shaft speed, and pressure head. The results correlate fairly well with experiments. The flow through a typical mixed-flow pump is calculated using computational fluid dynamics (CFD). The results show that pressure fluctuations and shear forces are not likely to add much to fish mortality. Guidelines for the design and selection of fish-friendly pumps are given with the introduction of two new dimensionless numbers: the blade strike probability factor and the blade strike velocity factor. It shows that fish-friendliness of pumps decreases with increasing specific speed value. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Linear stability analysis of an electrified viscoelastic liquid jet / Li-jun Yang in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 13 p.
Titre : Linear stability analysis of an electrified viscoelastic liquid jet Type de document : texte imprimé Auteurs : Li-jun Yang, Auteur ; Xin-Yu Liu, Auteur ; Qing-fei Fu, Auteur Année de publication : 2012 Article en page(s) : 13 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : linear analysis; electrified jet; viscoelastic liquid Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A linear instability analysis method has been used to investigate the breakup of an electrified viscoelastic liquid jet. The liquid is assumed to be a dilute polymer solution modeled by the linear viscoelastic constitutive equation. As for its electric properties, the liquid is assumed to be of perfect electrical conductivity. The axisymmetric and nonaxisymmetric disturbance wave growth rate has been worked out by solving the dispersion equation of an electrified viscoelastic liquid jet, which was obtained by combining the linear instability model of an electrified Newtonian liquid jet with the linear viscoelastic model. The maximum growth rate and corresponding dominant wavenumbers have been observed. The electrical Euler number, non-Newtonian rheological parameters and some flow parameters have been tested for their influence on the instability of the electrified viscoelastic liquid jet. The results show that the disturbance growth rate of electrified viscoelastic liquid jets is higher than that of Newtonian ones for axisymmetric mode disturbance and almost the same for the nonaxisymmetric mode. The growth rate of the axisymmetric mode is greater than that of the nonaxisymmetric mode for large wavenumbers, and the trend is opposite in the small wavenumber range. The ratio of gas to liquid density, electrical Euler number, and elasticity number can accelerate the breakup of the electrified viscoelastic liquid jet for both modes. The increase of the time constant ratio, zero shear viscosity, and jet radius can decrease the growth rate of the axisymmetric mode; however, their effects on the nonaxisymmetric mode are different. As for the effect of surface tension and jet velocity, there is a critical value. The variation trend is opposite when the surface tension or jet velocity is larger or smaller than the critical value. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Linear stability analysis of an electrified viscoelastic liquid jet [texte imprimé] / Li-jun Yang, Auteur ; Xin-Yu Liu, Auteur ; Qing-fei Fu, Auteur . - 2012 . - 13 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 13 p.
Mots-clés : linear analysis; electrified jet; viscoelastic liquid Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A linear instability analysis method has been used to investigate the breakup of an electrified viscoelastic liquid jet. The liquid is assumed to be a dilute polymer solution modeled by the linear viscoelastic constitutive equation. As for its electric properties, the liquid is assumed to be of perfect electrical conductivity. The axisymmetric and nonaxisymmetric disturbance wave growth rate has been worked out by solving the dispersion equation of an electrified viscoelastic liquid jet, which was obtained by combining the linear instability model of an electrified Newtonian liquid jet with the linear viscoelastic model. The maximum growth rate and corresponding dominant wavenumbers have been observed. The electrical Euler number, non-Newtonian rheological parameters and some flow parameters have been tested for their influence on the instability of the electrified viscoelastic liquid jet. The results show that the disturbance growth rate of electrified viscoelastic liquid jets is higher than that of Newtonian ones for axisymmetric mode disturbance and almost the same for the nonaxisymmetric mode. The growth rate of the axisymmetric mode is greater than that of the nonaxisymmetric mode for large wavenumbers, and the trend is opposite in the small wavenumber range. The ratio of gas to liquid density, electrical Euler number, and elasticity number can accelerate the breakup of the electrified viscoelastic liquid jet for both modes. The increase of the time constant ratio, zero shear viscosity, and jet radius can decrease the growth rate of the axisymmetric mode; however, their effects on the nonaxisymmetric mode are different. As for the effect of surface tension and jet velocity, there is a critical value. The variation trend is opposite when the surface tension or jet velocity is larger or smaller than the critical value. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Effect of co-flow on near field shock structure / T. Srinivasarao in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 05 p.
Titre : Effect of co-flow on near field shock structure Type de document : texte imprimé Auteurs : T. Srinivasarao, Auteur ; P. Lovaraju, Auteur ; E. Rathakrishnan, Auteur Année de publication : 2012 Article en page(s) : 05 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : underexpanded jets; co-flow Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents the experimental results of underexpanded jets delivered from a central nozzle surrounded by a co-flow. The co-flow is found to be effective in elongating the supersonic core length of the central jet, at all levels of underexpansion. However, the expansion level of the central jet dictates the elongation caused by the co-flow. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Effect of co-flow on near field shock structure [texte imprimé] / T. Srinivasarao, Auteur ; P. Lovaraju, Auteur ; E. Rathakrishnan, Auteur . - 2012 . - 05 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 05 p.
Mots-clés : underexpanded jets; co-flow Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents the experimental results of underexpanded jets delivered from a central nozzle surrounded by a co-flow. The co-flow is found to be effective in elongating the supersonic core length of the central jet, at all levels of underexpansion. However, the expansion level of the central jet dictates the elongation caused by the co-flow. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] Influence of the Lagrangian integral time scale estimation in the near wall region on particle deposition / Grégory Lecrivain in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 7 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 06 p.
Titre : Influence of the Lagrangian integral time scale estimation in the near wall region on particle deposition Type de document : texte imprimé Auteurs : Grégory Lecrivain, Auteur ; Uwe Hampel, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : pebble-bed reactor; friction; graphite; fuel elements; Lagrangian integral time scale Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In a high temperature pebble-bed reactor core where thousands of pebbles are amassed, the friction between the outer graphite layer of the fuel elements triggers the formation of carbonaceous dust. This dust is eventually conveyed by the cooling carrier phase and deposits in the primary circuit of the high temperature reactor. The numerical prediction of carbonaceous dust transport and deposition in turbulent flows is a key safety issue. Most particle tracking procedures make use of the Lagrangian integral time scale to reproduce the turbulent dispersion of the discrete phase. In the present Lagrangian particle tracking procedure, the effect of the Lagrangian integral time scale near the wall is thoroughly investigated. It is found that, in the linear sublayer, a value of the normalized wall normal component of the Lagrangian integral time scale lower that 4 delivers accurate particle deposition velocities. The value worked out here near the wall region is in accordance with Lagrangian integral time scales derived from recent direct numerical simulations. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...] [article] Influence of the Lagrangian integral time scale estimation in the near wall region on particle deposition [texte imprimé] / Grégory Lecrivain, Auteur ; Uwe Hampel, Auteur . - 2012 . - 06 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 7 (Juillet 2012) . - 06 p.
Mots-clés : pebble-bed reactor; friction; graphite; fuel elements; Lagrangian integral time scale Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In a high temperature pebble-bed reactor core where thousands of pebbles are amassed, the friction between the outer graphite layer of the fuel elements triggers the formation of carbonaceous dust. This dust is eventually conveyed by the cooling carrier phase and deposits in the primary circuit of the high temperature reactor. The numerical prediction of carbonaceous dust transport and deposition in turbulent flows is a key safety issue. Most particle tracking procedures make use of the Lagrangian integral time scale to reproduce the turbulent dispersion of the discrete phase. In the present Lagrangian particle tracking procedure, the effect of the Lagrangian integral time scale near the wall is thoroughly investigated. It is found that, in the linear sublayer, a value of the normalized wall normal component of the Lagrangian integral time scale lower that 4 delivers accurate particle deposition velocities. The value worked out here near the wall region is in accordance with Lagrangian integral time scales derived from recent direct numerical simulations. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000007 [...]
Exemplaires
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
aucun exemplaire |