Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Transactions of the ASME . Journal of engineering for gas turbines and power / Wennerstrom, Arthur J. . Vol. 134 N° 11Journal of engineering for gas turbines and powerMention de date : Novembre 2012 Paru le : 10/12/2012 |
Dépouillements
Ajouter le résultat dans votre panierEffects of core flow swirl on the flow characteristics of a scalloped forced mixer / Zhijun Lei in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Titre : Effects of core flow swirl on the flow characteristics of a scalloped forced mixer Type de document : texte imprimé Auteurs : Zhijun Lei, Auteur ; Ali Mahallati, Auteur ; Mark Cunningham, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : core flow swirl; scaled turbofan mixer; performance Résumé : This paper presents a detailed experimental investigation of the influence of core flow swirl on the mixing and performance of a scaled turbofan mixer with 12 scalloped lobes. Measurements were made downstream of the mixer in a coaxial wind tunnel. The core-to-bypass velocity ratio was set to 2:1, temperature ratio to 1.0, and pressure ratio to 1.03, giving a Reynolds number of 5.2 × 105, based on the core flow velocity and equivalent diameter. In the core flow, the background turbulence intensity was raised to 5% and the swirl angle was varied from 0 deg to 30 deg with five vane geometries. At low swirl angles, additional streamwise vortices were generated by the deformation of normal vortices due to the scalloped lobes. With increased core swirl, greater than 10 deg, the additional streamwise vortices were generated mainly due to radial velocity deflection, rather than stretching and deformation of normal vortices. At high swirl angles, stronger streamwise vortices and rapid interaction between various vortices promoted downstream mixing. Mixing was enhanced with minimal pressure and thrust losses for the inlet swirl angles less than 10 deg. However, the reversed flow downstream of the center body was a dominant contributor to the loss of thrust at the maximum core flow swirl angle of 30 deg. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Effects of core flow swirl on the flow characteristics of a scalloped forced mixer [texte imprimé] / Zhijun Lei, Auteur ; Ali Mahallati, Auteur ; Mark Cunningham, Auteur . - 2012 . - 09 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Mots-clés : core flow swirl; scaled turbofan mixer; performance Résumé : This paper presents a detailed experimental investigation of the influence of core flow swirl on the mixing and performance of a scaled turbofan mixer with 12 scalloped lobes. Measurements were made downstream of the mixer in a coaxial wind tunnel. The core-to-bypass velocity ratio was set to 2:1, temperature ratio to 1.0, and pressure ratio to 1.03, giving a Reynolds number of 5.2 × 105, based on the core flow velocity and equivalent diameter. In the core flow, the background turbulence intensity was raised to 5% and the swirl angle was varied from 0 deg to 30 deg with five vane geometries. At low swirl angles, additional streamwise vortices were generated by the deformation of normal vortices due to the scalloped lobes. With increased core swirl, greater than 10 deg, the additional streamwise vortices were generated mainly due to radial velocity deflection, rather than stretching and deformation of normal vortices. At high swirl angles, stronger streamwise vortices and rapid interaction between various vortices promoted downstream mixing. Mixing was enhanced with minimal pressure and thrust losses for the inlet swirl angles less than 10 deg. However, the reversed flow downstream of the center body was a dominant contributor to the loss of thrust at the maximum core flow swirl angle of 30 deg. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Analytical analysis of indirect combustion noise in subcritical nozzles / Alexis Giauque in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Titre : Analytical analysis of indirect combustion noise in subcritical nozzles Type de document : texte imprimé Auteurs : Alexis Giauque, Auteur ; Maxime Huet, Auteur ; Franck Clero, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : indirect combustion noise; finite length; analytical model Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This article revisits the problem of indirect combustion noise in nozzles of finite length. The analytical model proposed by Moase for indirect combustion noise is rederived and applied to subcritical nozzles having shapes of increasing complexity. This model is based on the equations formulated by Marble and Candel for which an explicit solution is obtained in the subsonic framework. The discretization of the nozzle into n elementary units of finite length implies the determination of 2n integration constants for which a set of linear equations is provided in this article. The analytical method is applied to configurations of increasing complexity. Analytical solutions are compared to numerical results obtained using SUNDAY (a 1D nonlinear Euler solver in temporal space) and CEDRE (3D Navier–Stokes flow solver). Excellent agreement is found for all configurations thereby showing that acceleration discontinuities at the boundaries between adjacent elements do not influence the actual acoustic transfer functions. The issue of nozzle compactness is addressed. It is found that in the subcritical domain, spectral results should be nondimensionalized using the flow-through-time of the entire nozzle. Doing so, transfer functions of nozzles of different lengths are successfully compared and a compactness criterion is proposed that writes omega*[integral]0Ldzeta/u(zeta)<1 where L is the axial length of the nozzle. Finally, the entropy wave generator (EWG) experimental setup is considered. Analytical results are compared to the results reported by Howe. Both models give similar trends and show the important role of the rising time of the fluctuating temperature front on the amplitude of the indirect acoustic emission. The experimental temperature profile and the impedance coefficients at the inlet and outlet are introduced into the analytical formulation. Results show that the indirect combustion noise mechanism is not alone responsible for the acoustic emission in the subcritical case. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Analytical analysis of indirect combustion noise in subcritical nozzles [texte imprimé] / Alexis Giauque, Auteur ; Maxime Huet, Auteur ; Franck Clero, Auteur . - 2012 . - 08 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Mots-clés : indirect combustion noise; finite length; analytical model Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This article revisits the problem of indirect combustion noise in nozzles of finite length. The analytical model proposed by Moase for indirect combustion noise is rederived and applied to subcritical nozzles having shapes of increasing complexity. This model is based on the equations formulated by Marble and Candel for which an explicit solution is obtained in the subsonic framework. The discretization of the nozzle into n elementary units of finite length implies the determination of 2n integration constants for which a set of linear equations is provided in this article. The analytical method is applied to configurations of increasing complexity. Analytical solutions are compared to numerical results obtained using SUNDAY (a 1D nonlinear Euler solver in temporal space) and CEDRE (3D Navier–Stokes flow solver). Excellent agreement is found for all configurations thereby showing that acceleration discontinuities at the boundaries between adjacent elements do not influence the actual acoustic transfer functions. The issue of nozzle compactness is addressed. It is found that in the subcritical domain, spectral results should be nondimensionalized using the flow-through-time of the entire nozzle. Doing so, transfer functions of nozzles of different lengths are successfully compared and a compactness criterion is proposed that writes omega*[integral]0Ldzeta/u(zeta)<1 where L is the axial length of the nozzle. Finally, the entropy wave generator (EWG) experimental setup is considered. Analytical results are compared to the results reported by Howe. Both models give similar trends and show the important role of the rising time of the fluctuating temperature front on the amplitude of the indirect acoustic emission. The experimental temperature profile and the impedance coefficients at the inlet and outlet are introduced into the analytical formulation. Results show that the indirect combustion noise mechanism is not alone responsible for the acoustic emission in the subcritical case. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Assessing alternative fuels for helicopter operation / A. Alexiou in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 10 p.
Titre : Assessing alternative fuels for helicopter operation Type de document : texte imprimé Auteurs : A. Alexiou, Auteur ; A. Tsalavoutas, Auteur ; B. Pons, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : aviation fuel; refining technology; transport/utility helicopter Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : At present, nearly 100% of aviation fuel is derived from petroleum using conventional and well known refining technology. However, the fluctuations of the fuel price and the vulnerability of crude oil sources have increased the interest of the aviation industry in alternate energy sources. The motivation of this interest is actually twofold: firstly, alternative fuels will help to stabilize price fluctuations by relieving the worldwide demand for conventional fuel. Secondly, alternative fuels could provide environmental benefits including a substantial reduction of emitted CO2 over the fuel life cycle. Thus, the ideal alternative fuel will fulfill both requirements: relieve the demand for fuels derived from crude oil and significantly reduce CO2 emissions. In the present paper, the effects of various alternative fuels on the operation of a medium transport/utility helicopter are investigated using performance models of the helicopter and its associated turboshaft engine. These models are developed in an object-oriented simulation environment that allows a direct mechanical connection to be established between them in order to create an integrated model. Considering the case of a typical mission for the specific helicopter/engine combination, a comparative evaluation of conventional and alternative fuels is then carried out and performance results are presented at both engine and helicopter levels. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Assessing alternative fuels for helicopter operation [texte imprimé] / A. Alexiou, Auteur ; A. Tsalavoutas, Auteur ; B. Pons, Auteur . - 2012 . - 10 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 10 p.
Mots-clés : aviation fuel; refining technology; transport/utility helicopter Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : At present, nearly 100% of aviation fuel is derived from petroleum using conventional and well known refining technology. However, the fluctuations of the fuel price and the vulnerability of crude oil sources have increased the interest of the aviation industry in alternate energy sources. The motivation of this interest is actually twofold: firstly, alternative fuels will help to stabilize price fluctuations by relieving the worldwide demand for conventional fuel. Secondly, alternative fuels could provide environmental benefits including a substantial reduction of emitted CO2 over the fuel life cycle. Thus, the ideal alternative fuel will fulfill both requirements: relieve the demand for fuels derived from crude oil and significantly reduce CO2 emissions. In the present paper, the effects of various alternative fuels on the operation of a medium transport/utility helicopter are investigated using performance models of the helicopter and its associated turboshaft engine. These models are developed in an object-oriented simulation environment that allows a direct mechanical connection to be established between them in order to create an integrated model. Considering the case of a typical mission for the specific helicopter/engine combination, a comparative evaluation of conventional and alternative fuels is then carried out and performance results are presented at both engine and helicopter levels. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Effects of outlet boundary conditions on the reacting flow field in a swirl-stabilized burner at dry and humid conditions / Steffen Terhaar in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Titre : Effects of outlet boundary conditions on the reacting flow field in a swirl-stabilized burner at dry and humid conditions Type de document : texte imprimé Auteurs : Steffen Terhaar, Auteur ; Bernhard C. Bobusch, Auteur ; Christian Oliver Paschereit, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : swirl-stabilized combustors; outlet boundary conditions; reacting flow field Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : During the design and testing process of swirl-stabilized combustors, it is often impractical to maintain identical outlet boundary conditions. Furthermore, it is a common practice to intentionally change the acoustic boundary conditions of the outlet in order to suppress thermoacoustic instabilities. In the presented work the susceptibility of the reacting flow field to downstream perturbations is assessed by the application of an area contraction at the outlet. Since combustion and fuel composition are shown to be important parameters for the influence of the boundary conditions on the flow field, highly steam diluted flames are investigated in addition to dry flames at different equivalence ratios and degrees of swirl. The applied measurement techniques include particle image velocimetry, laser doppler velocimetry, and emission analysis. The results reveal a clear correlation of the susceptibility of the flow field to downstream perturbations to both the inlet swirl number and the amount of dilatation caused by the flame. The concept of an effective swirl number downstream of the flame is applied to the results and is proven to be the dominating parameter. A theoretical explanation for the influence of this parameter is provided by the usage of the well known theory of subcritical and supercritical swirling flows, where perturbations can propagate upstream solely in subcritical flows via standing waves. Knowledge of the flow state is of particular importance for the evaluation of combustion tests with differing exit boundary conditions and the results emphasize the need for realistic exit boundary conditions for numerical simulations. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Effects of outlet boundary conditions on the reacting flow field in a swirl-stabilized burner at dry and humid conditions [texte imprimé] / Steffen Terhaar, Auteur ; Bernhard C. Bobusch, Auteur ; Christian Oliver Paschereit, Auteur . - 2012 . - 09 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Mots-clés : swirl-stabilized combustors; outlet boundary conditions; reacting flow field Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : During the design and testing process of swirl-stabilized combustors, it is often impractical to maintain identical outlet boundary conditions. Furthermore, it is a common practice to intentionally change the acoustic boundary conditions of the outlet in order to suppress thermoacoustic instabilities. In the presented work the susceptibility of the reacting flow field to downstream perturbations is assessed by the application of an area contraction at the outlet. Since combustion and fuel composition are shown to be important parameters for the influence of the boundary conditions on the flow field, highly steam diluted flames are investigated in addition to dry flames at different equivalence ratios and degrees of swirl. The applied measurement techniques include particle image velocimetry, laser doppler velocimetry, and emission analysis. The results reveal a clear correlation of the susceptibility of the flow field to downstream perturbations to both the inlet swirl number and the amount of dilatation caused by the flame. The concept of an effective swirl number downstream of the flame is applied to the results and is proven to be the dominating parameter. A theoretical explanation for the influence of this parameter is provided by the usage of the well known theory of subcritical and supercritical swirling flows, where perturbations can propagate upstream solely in subcritical flows via standing waves. Knowledge of the flow state is of particular importance for the evaluation of combustion tests with differing exit boundary conditions and the results emphasize the need for realistic exit boundary conditions for numerical simulations. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Using boundary conditions to account for mean flow effects in a zero mach number acoustic solver / Emmanuel Motheau in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Titre : Using boundary conditions to account for mean flow effects in a zero mach number acoustic solver Type de document : texte imprimé Auteurs : Emmanuel Motheau, Auteur ; Franck Nicoud, Auteur ; Thierry Poinsot, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : flow effects; thermoacoustic modes; turbine; acoustic and entropy waves; zero mach number Résumé : The present study is devoted to the modeling of mean flow effects while computing thermoacoustic modes under the zero Mach number assumption. It is first recalled that the acoustic impedance modeling of a compressor or a turbine must be prescribed under an energetical form instead of the classical acoustic variables. Then we demonstrate the feasibility to take into account the coupling between acoustic and entropy waves in a zero Mach number framework to capture a family of low frequency entropic modes. The proposed approach relies on a new delayed entropy coupled boundary condition (DECBC) and proves able to capture a family of low frequency entropic mode even though no mean flow term is included in the fluctuating pressure equation. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Using boundary conditions to account for mean flow effects in a zero mach number acoustic solver [texte imprimé] / Emmanuel Motheau, Auteur ; Franck Nicoud, Auteur ; Thierry Poinsot, Auteur . - 2012 . - 08 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Mots-clés : flow effects; thermoacoustic modes; turbine; acoustic and entropy waves; zero mach number Résumé : The present study is devoted to the modeling of mean flow effects while computing thermoacoustic modes under the zero Mach number assumption. It is first recalled that the acoustic impedance modeling of a compressor or a turbine must be prescribed under an energetical form instead of the classical acoustic variables. Then we demonstrate the feasibility to take into account the coupling between acoustic and entropy waves in a zero Mach number framework to capture a family of low frequency entropic modes. The proposed approach relies on a new delayed entropy coupled boundary condition (DECBC) and proves able to capture a family of low frequency entropic mode even though no mean flow term is included in the fluctuating pressure equation. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Characterization of the acoustic interactions in a two-stage multi-injection combustor fed with liquid fuel / Theodore Providakis in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Titre : Characterization of the acoustic interactions in a two-stage multi-injection combustor fed with liquid fuel Type de document : texte imprimé Auteurs : Theodore Providakis, Auteur ; Laurent Zimmer, Auteur ; Philippe Scouflaire, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : lean premixed prevaporized (LPP) regimes; gas turbines; burners Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Burners operating in lean premixed prevaporized (LPP) regimes are considered as good candidates to reduce pollutant emissions from gas turbines. Lean combustion regimes result in lower burnt gas temperatures and therefore a reduction on the NOx emissions, one of the main pollutant species. However, these burners usually show strong flame dynamics, making them prone to various stabilization problems (combustion instabilities, flashback, flame extinction). To face this issue, multi-injection staged combustion can be envisaged. Staging procedures enable fuel distribution control, while multipoint injections can lead to a fast and efficient mixing. A laboratory-scale staged multipoint combustor is developed in the present study, in the framework of LPP combustion, with an injection device close to the industrial one. Using a staging procedure between the primary pilot stage and the secondary multipoint one, droplet and velocity field distributions can be varied in the spray that is formed at the entrance of the combustion chamber. The resulting spray and flame are characterized using OH-planar laser induced fluorescence, high speed particle image velocimetry, and phase Doppler anemometry measurements. Three staging values, corresponding to three different flame stabilization processes, are analyzed, while power is kept constant. It is shown that mean values are strongly influenced by the fuel distribution and the flame position. Using adequate postprocessing, the interaction between the acoustic field and the droplet behavior is characterized. Spectral analysis reveals a strong acoustic-flame coupling leading to a low frequency oscillation of both the velocity field and the spray droplet distribution. In addition, acoustic measurements in the feeding line show that a strong oscillation of the acoustic field leads to a change in fuel injection, and hence droplet behavior. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Characterization of the acoustic interactions in a two-stage multi-injection combustor fed with liquid fuel [texte imprimé] / Theodore Providakis, Auteur ; Laurent Zimmer, Auteur ; Philippe Scouflaire, Auteur . - 2012 . - 08 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Mots-clés : lean premixed prevaporized (LPP) regimes; gas turbines; burners Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Burners operating in lean premixed prevaporized (LPP) regimes are considered as good candidates to reduce pollutant emissions from gas turbines. Lean combustion regimes result in lower burnt gas temperatures and therefore a reduction on the NOx emissions, one of the main pollutant species. However, these burners usually show strong flame dynamics, making them prone to various stabilization problems (combustion instabilities, flashback, flame extinction). To face this issue, multi-injection staged combustion can be envisaged. Staging procedures enable fuel distribution control, while multipoint injections can lead to a fast and efficient mixing. A laboratory-scale staged multipoint combustor is developed in the present study, in the framework of LPP combustion, with an injection device close to the industrial one. Using a staging procedure between the primary pilot stage and the secondary multipoint one, droplet and velocity field distributions can be varied in the spray that is formed at the entrance of the combustion chamber. The resulting spray and flame are characterized using OH-planar laser induced fluorescence, high speed particle image velocimetry, and phase Doppler anemometry measurements. Three staging values, corresponding to three different flame stabilization processes, are analyzed, while power is kept constant. It is shown that mean values are strongly influenced by the fuel distribution and the flame position. Using adequate postprocessing, the interaction between the acoustic field and the droplet behavior is characterized. Spectral analysis reveals a strong acoustic-flame coupling leading to a low frequency oscillation of both the velocity field and the spray droplet distribution. In addition, acoustic measurements in the feeding line show that a strong oscillation of the acoustic field leads to a change in fuel injection, and hence droplet behavior. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] The impact of compressor exit conditions on fuel injector flows / C. L. Ford in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Titre : The impact of compressor exit conditions on fuel injector flows Type de document : texte imprimé Auteurs : C. L. Ford, Auteur ; J. F. Carrotte, Auteur ; A. D. Walker, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : compressor; air flow; burn fuel injectors Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper examines the effect of compressor generated inlet conditions on the air flow uniformity through lean burn fuel injectors. Any resulting nonuniformity in the injector flow field can impact on local fuel air ratios and hence emissions performance. The geometry considered is typical of the lean burn systems currently being proposed for future, low emission aero engines. Initially, Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) predictions were used to examine the flow field development between compressor exit and the inlet to the fuel injector. This enabled the main flow field features in this region to be characterized along with identification of the various stream-tubes captured by the fuel injector passages. The predictions indicate the resulting flow fields entering the injector passages are not uniform. This is particularly evident in the annular passages furthest away from the injector centerline which pass the majority of the flow which subsequently forms the main reaction zone within the flame tube. Detailed experimental measurements were also undertaken on a fully annular facility incorporating an axial compressor and lean burn combustion system. The measurements were obtained at near atmospheric pressure/temperatures and under nonreacting conditions. Time-resolved and time-averaged data were obtained at various locations and included measurements of the flow field issuing from the various fuel injector passages. In this way any nonuniformity in these flow fields could be quantified. In conjunction with the numerical data, the sources of nonuniformities in the injector exit plane were identified. For example, a large scale bulk variation (+/−10%) of the injector flow field was attributed to the development of the flow field upstream of the injector, compared with localized variations (+/−5%) that were generated by the injector swirl vane wakes. Using this data the potential effects on fuel injector emissions performance can be assessed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] The impact of compressor exit conditions on fuel injector flows [texte imprimé] / C. L. Ford, Auteur ; J. F. Carrotte, Auteur ; A. D. Walker, Auteur . - 2012 . - 09 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Mots-clés : compressor; air flow; burn fuel injectors Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper examines the effect of compressor generated inlet conditions on the air flow uniformity through lean burn fuel injectors. Any resulting nonuniformity in the injector flow field can impact on local fuel air ratios and hence emissions performance. The geometry considered is typical of the lean burn systems currently being proposed for future, low emission aero engines. Initially, Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) predictions were used to examine the flow field development between compressor exit and the inlet to the fuel injector. This enabled the main flow field features in this region to be characterized along with identification of the various stream-tubes captured by the fuel injector passages. The predictions indicate the resulting flow fields entering the injector passages are not uniform. This is particularly evident in the annular passages furthest away from the injector centerline which pass the majority of the flow which subsequently forms the main reaction zone within the flame tube. Detailed experimental measurements were also undertaken on a fully annular facility incorporating an axial compressor and lean burn combustion system. The measurements were obtained at near atmospheric pressure/temperatures and under nonreacting conditions. Time-resolved and time-averaged data were obtained at various locations and included measurements of the flow field issuing from the various fuel injector passages. In this way any nonuniformity in these flow fields could be quantified. In conjunction with the numerical data, the sources of nonuniformities in the injector exit plane were identified. For example, a large scale bulk variation (+/−10%) of the injector flow field was attributed to the development of the flow field upstream of the injector, compared with localized variations (+/−5%) that were generated by the injector swirl vane wakes. Using this data the potential effects on fuel injector emissions performance can be assessed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Considerations on the numerical modeling and performance of axial swirlers under relight conditions / Nicholas Grech in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Titre : Considerations on the numerical modeling and performance of axial swirlers under relight conditions Type de document : texte imprimé Auteurs : Nicholas Grech, Auteur ; Charlie Koupper, Auteur ; Zachos, Pavlos K., Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : axially swirled atomizer; windmilling engine environment; tangential velocity Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Numerical modeling of aero engine combustors under relight conditions is a matter of continuously increasing importance due to the demanding engine certification regulations. In order to reduce the complexity and the cost of the numerical modeling, common practice is to replace the atomizer's swirlers with velocity profiles boundary conditions, very often scaled down from nominal operating conditions assuming similarity of the swirler flowfield. The current numerical study focuses on the flowfield characteristics of an axially swirled atomizer operating within a windmilling engine environment. The scalability of the velocity profile from higher power settings is examined. Observations on the performance of the axial swirler under relight conditions are also made. Experimental data was used as a validation platform for the numerical solver, after a grid sensitivity study and a turbulence model selection process. Boundary conditions for simulating the windmilling environment were extracted from experimental work. The swirler axial and tangential velocity profiles were normalized using the swirler inlet velocity. Results showed that both profiles are only scalable for windmilling conditions of high flight Mach number (>= 0.5). At low flight Mach numbers, the actual profile had a lower velocity than that predicted through scaling. The swirl number was found to deteriorate significantly with the flight velocity following a linear trend, reducing significantly the expected flame quality. As a consequence the burner is forced to operate at the edge of its stability loop with low certainty regarding its successful relight. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Considerations on the numerical modeling and performance of axial swirlers under relight conditions [texte imprimé] / Nicholas Grech, Auteur ; Charlie Koupper, Auteur ; Zachos, Pavlos K., Auteur . - 2012 . - 08 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Mots-clés : axially swirled atomizer; windmilling engine environment; tangential velocity Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Numerical modeling of aero engine combustors under relight conditions is a matter of continuously increasing importance due to the demanding engine certification regulations. In order to reduce the complexity and the cost of the numerical modeling, common practice is to replace the atomizer's swirlers with velocity profiles boundary conditions, very often scaled down from nominal operating conditions assuming similarity of the swirler flowfield. The current numerical study focuses on the flowfield characteristics of an axially swirled atomizer operating within a windmilling engine environment. The scalability of the velocity profile from higher power settings is examined. Observations on the performance of the axial swirler under relight conditions are also made. Experimental data was used as a validation platform for the numerical solver, after a grid sensitivity study and a turbulence model selection process. Boundary conditions for simulating the windmilling environment were extracted from experimental work. The swirler axial and tangential velocity profiles were normalized using the swirler inlet velocity. Results showed that both profiles are only scalable for windmilling conditions of high flight Mach number (>= 0.5). At low flight Mach numbers, the actual profile had a lower velocity than that predicted through scaling. The swirl number was found to deteriorate significantly with the flight velocity following a linear trend, reducing significantly the expected flame quality. As a consequence the burner is forced to operate at the edge of its stability loop with low certainty regarding its successful relight. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Modeling contra-rotating turbomachinery components for engine performance simulations / A. Alexiou in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 10 p.
Titre : Modeling contra-rotating turbomachinery components for engine performance simulations : the geared turbofan with contra-rotating core case Type de document : texte imprimé Auteurs : A. Alexiou, Auteur ; I. Roumeliotis, Auteur ; N. Aretakis, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : modeling contra-rotating turbomachinery components; suitably; aero-engine core concepts Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents a method of modeling contra-rotating turbomachinery components for engine performance simulations. The first step is to generate the performance characteristics of such components. In this study, suitably modified one-dimensional mean line codes are used. The characteristics are then converted to three-dimensional tables (maps). Compared to conventional turbomachinery component maps, the speed ratio between the two shafts is included as an additional map parameter and the torque ratio as an additional table. Dedicated component models are then developed that use these maps to simulate design and off-design operation at the component and engine levels. Using this approach, a performance model of a geared turbofan with a contra-rotating core (CRC) is created. This configuration was investigated in the context of the European program “NEW Aero-Engine Core Concepts” (NEWAC). The core consists of a seven-stage compressor and a two-stage turbine without interstage stators and with successive rotors running in the opposite direction through the introduction of a rotating outer spool. Such a configuration results in a reduced parts count, length, weight, and cost of the entire high pressure (HP) system. Additionally, the core efficiency is improved due to reduced cooling air flow requirements. The model is then coupled to an aircraft performance model and a typical mission is carried out. The results are compared against those of a similar configuration employing a conventional core and identical design point performance. For the given aircraft-mission combination and assuming a 10% engine weight saving when using the CRC arrangement over the conventional one, a total fuel burn reduction of 1.1% is predicted. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Modeling contra-rotating turbomachinery components for engine performance simulations : the geared turbofan with contra-rotating core case [texte imprimé] / A. Alexiou, Auteur ; I. Roumeliotis, Auteur ; N. Aretakis, Auteur . - 2012 . - 10 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 10 p.
Mots-clés : modeling contra-rotating turbomachinery components; suitably; aero-engine core concepts Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents a method of modeling contra-rotating turbomachinery components for engine performance simulations. The first step is to generate the performance characteristics of such components. In this study, suitably modified one-dimensional mean line codes are used. The characteristics are then converted to three-dimensional tables (maps). Compared to conventional turbomachinery component maps, the speed ratio between the two shafts is included as an additional map parameter and the torque ratio as an additional table. Dedicated component models are then developed that use these maps to simulate design and off-design operation at the component and engine levels. Using this approach, a performance model of a geared turbofan with a contra-rotating core (CRC) is created. This configuration was investigated in the context of the European program “NEW Aero-Engine Core Concepts” (NEWAC). The core consists of a seven-stage compressor and a two-stage turbine without interstage stators and with successive rotors running in the opposite direction through the introduction of a rotating outer spool. Such a configuration results in a reduced parts count, length, weight, and cost of the entire high pressure (HP) system. Additionally, the core efficiency is improved due to reduced cooling air flow requirements. The model is then coupled to an aircraft performance model and a typical mission is carried out. The results are compared against those of a similar configuration employing a conventional core and identical design point performance. For the given aircraft-mission combination and assuming a 10% engine weight saving when using the CRC arrangement over the conventional one, a total fuel burn reduction of 1.1% is predicted. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Evaluation of design performance of the semi-closed oxy-fuel combustion combined cycle / H. J. Yang in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 10 p.
Titre : Evaluation of design performance of the semi-closed oxy-fuel combustion combined cycle Type de document : texte imprimé Auteurs : H. J. Yang, Auteur ; D. W. Kang, Auteur ; J. H. Ahn, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : natural gas; semi-closed oxy-fuel combustion combined cycle (SCOC-CC) Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This study aims to present various design aspects and realizable performance of the natural gas fired semi-closed oxy-fuel combustion combined cycle (SCOC-CC). The design parameters of the cycle are set up on the basis of the component technologies of today's state-of-the-art gas turbines with a turbine inlet temperature between 1400 °C and 1600 °C. The most important part of the cycle analysis is the turbine cooling, which considerably affects the cycle performance. A thermodynamic cooling model is introduced in order to predict the reasonable amount of turbine coolant needed to maintain the turbine blade temperature of the SCOC-CC at the levels of those of conventional gas turbines. The optimal pressure ratio ranges of the SCOC-CC for two different turbine inlet temperature levels are researched. The performance penalty due to the CO2 capture is examined. The influences of the purity of the oxygen provided by the air separation unit on the cycle performance are also investigated. A comparison with the conventional combined cycle, adopting a postcombustion CO2 capture, is carried out, taking into account the relationship between the performance and the CO2 capture rate. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Evaluation of design performance of the semi-closed oxy-fuel combustion combined cycle [texte imprimé] / H. J. Yang, Auteur ; D. W. Kang, Auteur ; J. H. Ahn, Auteur . - 2012 . - 10 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 10 p.
Mots-clés : natural gas; semi-closed oxy-fuel combustion combined cycle (SCOC-CC) Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This study aims to present various design aspects and realizable performance of the natural gas fired semi-closed oxy-fuel combustion combined cycle (SCOC-CC). The design parameters of the cycle are set up on the basis of the component technologies of today's state-of-the-art gas turbines with a turbine inlet temperature between 1400 °C and 1600 °C. The most important part of the cycle analysis is the turbine cooling, which considerably affects the cycle performance. A thermodynamic cooling model is introduced in order to predict the reasonable amount of turbine coolant needed to maintain the turbine blade temperature of the SCOC-CC at the levels of those of conventional gas turbines. The optimal pressure ratio ranges of the SCOC-CC for two different turbine inlet temperature levels are researched. The performance penalty due to the CO2 capture is examined. The influences of the purity of the oxygen provided by the air separation unit on the cycle performance are also investigated. A comparison with the conventional combined cycle, adopting a postcombustion CO2 capture, is carried out, taking into account the relationship between the performance and the CO2 capture rate. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Performance characteristics of an operating supercritical CO2 Brayton cycle / Thomas Conboy in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 12 p.
Titre : Performance characteristics of an operating supercritical CO2 Brayton cycle Type de document : texte imprimé Auteurs : Thomas Conboy, Auteur ; Steven Wright, Auteur ; James Pasch, Auteur Année de publication : 2012 Article en page(s) : 12 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : supercritical CO2 (S-CO2) power cycles; power conversion; Brayton cycle Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Supercritical CO2 (S-CO2) power cycles offer the potential for better overall plant economics due to their high power conversion efficiency over a moderate range of heat source temperatures, compact size, and potential use of standard materials in construction. Sandia National Labs (Albuquerque, NM) and the U.S. Department of Energy (DOE-NE) are in the process of constructing and operating a megawatt-scale supercritical CO2 split-flow recompression Brayton cycle with contractor Barber-Nichols Inc. (Arvada, CO). This facility can be counted among the first and only S-CO2 power producing Brayton cycles anywhere in the world. The Sandia-DOE test-loop has recently concluded a phase of construction that has substantially upgraded the facility by installing additional heaters, a second recuperating printed circuit heat exchanger (PCHE), more waste heat removal capability, higher capacity load banks, higher temperature piping, and more capable scavenging pumps to reduce windage within the turbomachinery. With these additions, the loop has greatly increased its potential for electrical power generation, and its ability to reach higher temperatures. To date, the loop has been primarily operated as a simple recuperated Brayton cycle, meaning a single turbine, single compressor, and undivided flow paths. In this configuration, the test facility has begun to realize its upgraded capacity by achieving new records in turbine inlet temperature (650 °F/615 K), shaft speed (52,000 rpm), pressure ratio (1.65), flow rate (2.7 kg/s), and electrical power generated (20 kWe). Operation at higher speeds, flow rates, pressures, and temperatures has allowed a more revealing look at the performance of essential power cycle components in a supercritical CO2 working fluid, including recuperation and waste heat rejection heat exchangers (PCHEs), turbines and compressors, bearings and seals, as well as auxiliary equipment. In this report, performance of these components to date will be detailed, including a discussion of expected operational limits as higher speeds and temperatures are approached. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Performance characteristics of an operating supercritical CO2 Brayton cycle [texte imprimé] / Thomas Conboy, Auteur ; Steven Wright, Auteur ; James Pasch, Auteur . - 2012 . - 12 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 12 p.
Mots-clés : supercritical CO2 (S-CO2) power cycles; power conversion; Brayton cycle Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Supercritical CO2 (S-CO2) power cycles offer the potential for better overall plant economics due to their high power conversion efficiency over a moderate range of heat source temperatures, compact size, and potential use of standard materials in construction. Sandia National Labs (Albuquerque, NM) and the U.S. Department of Energy (DOE-NE) are in the process of constructing and operating a megawatt-scale supercritical CO2 split-flow recompression Brayton cycle with contractor Barber-Nichols Inc. (Arvada, CO). This facility can be counted among the first and only S-CO2 power producing Brayton cycles anywhere in the world. The Sandia-DOE test-loop has recently concluded a phase of construction that has substantially upgraded the facility by installing additional heaters, a second recuperating printed circuit heat exchanger (PCHE), more waste heat removal capability, higher capacity load banks, higher temperature piping, and more capable scavenging pumps to reduce windage within the turbomachinery. With these additions, the loop has greatly increased its potential for electrical power generation, and its ability to reach higher temperatures. To date, the loop has been primarily operated as a simple recuperated Brayton cycle, meaning a single turbine, single compressor, and undivided flow paths. In this configuration, the test facility has begun to realize its upgraded capacity by achieving new records in turbine inlet temperature (650 °F/615 K), shaft speed (52,000 rpm), pressure ratio (1.65), flow rate (2.7 kg/s), and electrical power generated (20 kWe). Operation at higher speeds, flow rates, pressures, and temperatures has allowed a more revealing look at the performance of essential power cycle components in a supercritical CO2 working fluid, including recuperation and waste heat rejection heat exchangers (PCHEs), turbines and compressors, bearings and seals, as well as auxiliary equipment. In this report, performance of these components to date will be detailed, including a discussion of expected operational limits as higher speeds and temperatures are approached. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] A mobile test rig for micro gas turbines based on a thermal power measurement approach / Stefan aus der Wiesche in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Titre : A mobile test rig for micro gas turbines based on a thermal power measurement approach Type de document : texte imprimé Auteurs : Stefan aus der Wiesche, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : micro gas turbines; thermal measurement Résumé : It is widely considered that micro gas turbines are potential devices for future energy needs. However, many micro gas turbine development projects have failed, particularly those with a very low power level below 10 kW. The financial and experimental capabilities for micro gas turbine development projects are typically extremely limited; hence, there is a need for low cost mobile test rigs. To close this gap, a robust mobile test rig for turboshaft micro gas turbines was developed and validated. The shaft power can be determined using a thermal measurement approach. This circumvents any issues associated with high voltage and electric current levels. The shaft power can be obtained by a straightforward parameter identification procedure based on simple temperature measurements. This approach is feasible because an analytical expression for the transient temperature field can be obtained. The test rig and thermal power measurement concept were fully validated by a commercial micro gas turbine; good agreement was obtained between the experimental results and the theoretical process data. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] A mobile test rig for micro gas turbines based on a thermal power measurement approach [texte imprimé] / Stefan aus der Wiesche, Auteur . - 2012 . - 08 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Mots-clés : micro gas turbines; thermal measurement Résumé : It is widely considered that micro gas turbines are potential devices for future energy needs. However, many micro gas turbine development projects have failed, particularly those with a very low power level below 10 kW. The financial and experimental capabilities for micro gas turbine development projects are typically extremely limited; hence, there is a need for low cost mobile test rigs. To close this gap, a robust mobile test rig for turboshaft micro gas turbines was developed and validated. The shaft power can be determined using a thermal measurement approach. This circumvents any issues associated with high voltage and electric current levels. The shaft power can be obtained by a straightforward parameter identification procedure based on simple temperature measurements. This approach is feasible because an analytical expression for the transient temperature field can be obtained. The test rig and thermal power measurement concept were fully validated by a commercial micro gas turbine; good agreement was obtained between the experimental results and the theoretical process data. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Crack detection in a rotor dynamic system by vibration monitoring—part II: extended analysis and experimental results / Philip Varney in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 10 p.
Titre : Crack detection in a rotor dynamic system by vibration monitoring—part II: extended analysis and experimental results Type de document : texte imprimé Auteurs : Philip Varney, Auteur ; Itzhak Green, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : rotordynamic systems; cracks; transfer matrix models Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An increase in the power-to-weight ratio demand on rotordynamic systems causes increased susceptibility to transverse fatigue cracking of the shaft. The ability to detect cracks at an early stage of progression is imperative for minimizing off-line repair time and cost. The vibration monitoring system initially proposed in Part I is employed herein, using the 2X harmonic response component of the rotor tilt as a signature indicating a transverse shaft crack. In addition, the analytic work presented in Part I is expanded to include a new notch crack model to better approximate experimental results. To effectively capture the 2X response, the crack model must include the local nature of the crack, the depth of the crack, and the stiffness asymmetry inducing the gravity-forced 2X harmonic response. The transfer matrix technique is well suited to incorporate these crack attributes due to its modular nature. Two transfer matrix models are proposed to predict the 2X harmonic response. The first model applies local crack flexibility coefficients determined using the strain energy release rate, while the second incorporates the crack as a rectangular notch to emulate a manufactured crack used in the experiments. Analytic results are compared to experimental measurement of the rotor tilt gleaned from an overhung rotor test rig originally designed to monitor seal face dynamics. The test rig is discussed, and experimental angular response orbits and 2X harmonic amplitudes of the rotor tilt are provided for shafts containing manufactured cracks of depths between 0% and 40%. Feasibility of simultaneous multiple-fault detection of transverse shaft cracks and seal face contact is discussed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Crack detection in a rotor dynamic system by vibration monitoring—part II: extended analysis and experimental results [texte imprimé] / Philip Varney, Auteur ; Itzhak Green, Auteur . - 2012 . - 10 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 10 p.
Mots-clés : rotordynamic systems; cracks; transfer matrix models Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An increase in the power-to-weight ratio demand on rotordynamic systems causes increased susceptibility to transverse fatigue cracking of the shaft. The ability to detect cracks at an early stage of progression is imperative for minimizing off-line repair time and cost. The vibration monitoring system initially proposed in Part I is employed herein, using the 2X harmonic response component of the rotor tilt as a signature indicating a transverse shaft crack. In addition, the analytic work presented in Part I is expanded to include a new notch crack model to better approximate experimental results. To effectively capture the 2X response, the crack model must include the local nature of the crack, the depth of the crack, and the stiffness asymmetry inducing the gravity-forced 2X harmonic response. The transfer matrix technique is well suited to incorporate these crack attributes due to its modular nature. Two transfer matrix models are proposed to predict the 2X harmonic response. The first model applies local crack flexibility coefficients determined using the strain energy release rate, while the second incorporates the crack as a rectangular notch to emulate a manufactured crack used in the experiments. Analytic results are compared to experimental measurement of the rotor tilt gleaned from an overhung rotor test rig originally designed to monitor seal face dynamics. The test rig is discussed, and experimental angular response orbits and 2X harmonic amplitudes of the rotor tilt are provided for shafts containing manufactured cracks of depths between 0% and 40%. Feasibility of simultaneous multiple-fault detection of transverse shaft cracks and seal face contact is discussed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Characterization of stiffness and damping in textured sector pad micro thrust bearings using computational fluid dynamics / Christos I. Papadopoulos in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Titre : Characterization of stiffness and damping in textured sector pad micro thrust bearings using computational fluid dynamics Type de document : texte imprimé Auteurs : Christos I. Papadopoulos, Auteur ; Pantelis G. Nikolakopoulos, Auteur ; Lambros Kaiktsis, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : 3D micro thrust bearings; sector pad; stiffness; damping; CFD Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In the present paper, a study of stiffness and damping in sector-pad micro thrust bearings with artificial surface texturing is presented, based on computational fluid dynamics (CFD) simulations. The bearing pads are modeled as consecutive three-dimensional independent microchannels, each consisting of a smooth rotating wall (rotor) and a partially textured stationary wall (stator). CFD simulations are performed, consisting in the numerical solution of the Navier–Stokes equations for incompressible isothermal flow. The goal of the present study is to characterize the dynamic behavior of favorable designs, identified in previous optimization studies, comprising parallel and convergent thrust bearings with rectangular texture patterns. To this end, a translational degree of freedom (DOF) along the thrust direction and a rotational (tilting) DOF of the rotor are considered. By implementing appropriate small perturbations around the equilibrium (steady-state) position and processing the simulation results, the stiffness and damping coefficients of the bearing are obtained for each DOF. The computed dynamic coefficients of textured thrust bearings are compared to those of conventional (smooth slider) designs. It is found that the dependence of bearing stiffness and damping on geometrical parameters exhibits the same trends for both DOFs. Both stiffness and damping are found to increase with bearing width. In general, increasing the bearing convergence ratio results in increased bearing stiffness and decreased damping. Finally, the present results demonstrate that properly textured parallel sliders are characterized by an overall dynamic performance that is superior to that of smooth converging sliders. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Characterization of stiffness and damping in textured sector pad micro thrust bearings using computational fluid dynamics [texte imprimé] / Christos I. Papadopoulos, Auteur ; Pantelis G. Nikolakopoulos, Auteur ; Lambros Kaiktsis, Auteur . - 2012 . - 09 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Mots-clés : 3D micro thrust bearings; sector pad; stiffness; damping; CFD Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In the present paper, a study of stiffness and damping in sector-pad micro thrust bearings with artificial surface texturing is presented, based on computational fluid dynamics (CFD) simulations. The bearing pads are modeled as consecutive three-dimensional independent microchannels, each consisting of a smooth rotating wall (rotor) and a partially textured stationary wall (stator). CFD simulations are performed, consisting in the numerical solution of the Navier–Stokes equations for incompressible isothermal flow. The goal of the present study is to characterize the dynamic behavior of favorable designs, identified in previous optimization studies, comprising parallel and convergent thrust bearings with rectangular texture patterns. To this end, a translational degree of freedom (DOF) along the thrust direction and a rotational (tilting) DOF of the rotor are considered. By implementing appropriate small perturbations around the equilibrium (steady-state) position and processing the simulation results, the stiffness and damping coefficients of the bearing are obtained for each DOF. The computed dynamic coefficients of textured thrust bearings are compared to those of conventional (smooth slider) designs. It is found that the dependence of bearing stiffness and damping on geometrical parameters exhibits the same trends for both DOFs. Both stiffness and damping are found to increase with bearing width. In general, increasing the bearing convergence ratio results in increased bearing stiffness and decreased damping. Finally, the present results demonstrate that properly textured parallel sliders are characterized by an overall dynamic performance that is superior to that of smooth converging sliders. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] On the nonlinear dynamics of two types of backup bearings / Said Lahriri in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 13 p.
Titre : On the nonlinear dynamics of two types of backup bearings : theoretical and experimental aspects Type de document : texte imprimé Auteurs : Said Lahriri, Auteur ; Ilmar F. Santos, Auteur Année de publication : 2012 Article en page(s) : 13 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : rotor; stator; aerodynamic and hydrodynamic forces; bearings; mathematical model Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The possible contact between rotor and stator can for some cases be considered a serious malfunction that may lead to catastrophic failure. Rotor rub is considered a secondary phenomenon caused by a primary source that leads to a disruption of the normal operational condition. It arises from sudden mass unbalance, instabilities generated by aerodynamic and hydrodynamic forces in seals and bearings among others. The contact event gives rise to normal and friction forces exerted on the rotor at impact events. The friction force plays a significant role by transferring some rotational energy of the rotor to lateral motion, impacting the stator. This event results in persistent coupled lateral vibration of the rotor and stator. This paper proposes a new unconventional backup bearing design in order to reduce the rub related severity in friction. The idea is to utilize pin connections that center the rotor during impacts. In this way, the rotor is forced to the center and the lateral motion is mitigated. The four pins are passively adjustable, which allows the clearance to be customized. A mathematical model has been developed to capture phenomena arising from impact for the conventional backup bearing (annular guide) and for the new disk-pin backup bearing. For the conventional annular guide setup, it is reasonable to superpose an impact condition to the rub, where the rotor spin energy can be fully transformed into rotor lateral movements. Using a nonideal drive, i.e., an electric motor without any kind of velocity feedback control, it is even possible to almost stop the rotor spin under rubbing conditions. All the rotational energy will be transformed in a kind of “self-excited” rotor lateral vibration with repeated impacts against the housing. The vibration of the housing is coupled through the interaction force. The experimental and numerical analysis shows that for the conventional annular guide setup, the rotational energy is fully transformed into lateral motion and the rotor spin is stopped. However, by employing the new disk-pin design the analysis shows that the rotor at impact is forced to the center of the backup bearing and the lateral motion is mitigated. As a result of this, the rotor spin is kept constant. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] On the nonlinear dynamics of two types of backup bearings : theoretical and experimental aspects [texte imprimé] / Said Lahriri, Auteur ; Ilmar F. Santos, Auteur . - 2012 . - 13 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 13 p.
Mots-clés : rotor; stator; aerodynamic and hydrodynamic forces; bearings; mathematical model Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The possible contact between rotor and stator can for some cases be considered a serious malfunction that may lead to catastrophic failure. Rotor rub is considered a secondary phenomenon caused by a primary source that leads to a disruption of the normal operational condition. It arises from sudden mass unbalance, instabilities generated by aerodynamic and hydrodynamic forces in seals and bearings among others. The contact event gives rise to normal and friction forces exerted on the rotor at impact events. The friction force plays a significant role by transferring some rotational energy of the rotor to lateral motion, impacting the stator. This event results in persistent coupled lateral vibration of the rotor and stator. This paper proposes a new unconventional backup bearing design in order to reduce the rub related severity in friction. The idea is to utilize pin connections that center the rotor during impacts. In this way, the rotor is forced to the center and the lateral motion is mitigated. The four pins are passively adjustable, which allows the clearance to be customized. A mathematical model has been developed to capture phenomena arising from impact for the conventional backup bearing (annular guide) and for the new disk-pin backup bearing. For the conventional annular guide setup, it is reasonable to superpose an impact condition to the rub, where the rotor spin energy can be fully transformed into rotor lateral movements. Using a nonideal drive, i.e., an electric motor without any kind of velocity feedback control, it is even possible to almost stop the rotor spin under rubbing conditions. All the rotational energy will be transformed in a kind of “self-excited” rotor lateral vibration with repeated impacts against the housing. The vibration of the housing is coupled through the interaction force. The experimental and numerical analysis shows that for the conventional annular guide setup, the rotational energy is fully transformed into lateral motion and the rotor spin is stopped. However, by employing the new disk-pin design the analysis shows that the rotor at impact is forced to the center of the backup bearing and the lateral motion is mitigated. As a result of this, the rotor spin is kept constant. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Tribological behaviors of titanium nitride- and chromium-nitride-based physical vapor deposition coating systems / Feng Cai in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Titre : Tribological behaviors of titanium nitride- and chromium-nitride-based physical vapor deposition coating systems Type de document : texte imprimé Auteurs : Feng Cai, Auteur ; Huang, Xiao, Auteur ; Qi Yang, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : TiN- and CrN-based coating systems; microstructures; erosion Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This study investigates the effects of the deposition process and coating composition on microstructural and tribological properties of TiN- and CrN-based coating systems. Coatings were produced using various PVD-based processes—electron beam (EB), cathodic arc (CA), and plasma enhanced magnetron sputtering (PEMS). All coated samples were evaluated for their composition, microstructure, and surface morphology. Coating mechanical properties such as hardness, Young's modulus, and coefficient of friction were also studied and related to their microstructures, wear, and erosion resistances. It was found that hardness (H), Young's modulus (E), and coefficient of friction had impact on both wear and erosion rates. In particular, the H3/E2 ratio was inversely proportional to the specific wear rate. For erosion behavior, higher H3/E2 ratios relate to lower erosion rates at low impingement angles, whereas higher H3/E2 ratios relate to higher erosion rates at high impingement angles. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Tribological behaviors of titanium nitride- and chromium-nitride-based physical vapor deposition coating systems [texte imprimé] / Feng Cai, Auteur ; Huang, Xiao, Auteur ; Qi Yang, Auteur . - 2012 . - 08 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Mots-clés : TiN- and CrN-based coating systems; microstructures; erosion Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This study investigates the effects of the deposition process and coating composition on microstructural and tribological properties of TiN- and CrN-based coating systems. Coatings were produced using various PVD-based processes—electron beam (EB), cathodic arc (CA), and plasma enhanced magnetron sputtering (PEMS). All coated samples were evaluated for their composition, microstructure, and surface morphology. Coating mechanical properties such as hardness, Young's modulus, and coefficient of friction were also studied and related to their microstructures, wear, and erosion resistances. It was found that hardness (H), Young's modulus (E), and coefficient of friction had impact on both wear and erosion rates. In particular, the H3/E2 ratio was inversely proportional to the specific wear rate. For erosion behavior, higher H3/E2 ratios relate to lower erosion rates at low impingement angles, whereas higher H3/E2 ratios relate to higher erosion rates at high impingement angles. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Impact of manufacturing variability on multistage high-pressure compressor performance / Alexander Lange in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Titre : Impact of manufacturing variability on multistage high-pressure compressor performance Type de document : texte imprimé Auteurs : Alexander Lange, Auteur ; Matthias Voigt, Auteur ; Konrad Vogeler, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : multistage high-pressure compressor (HPC); manufacturing process; rotor rows Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The present paper introduces a novel approach for considering manufacturing variability in the numerical simulation of a multistage high-pressure compressor (HPC). The manufacturing process is investigated by analyzing three of a total of ten rotor rows. Therefore, 150 blades of each of the three rows were 3D scanned to obtain surface meshes of real blades. The deviation of a scanned blade to the design intent is quantified by a vector of 14 geometric parameters. Interpolating the statistical properties of these parameters provides the manufacturing scatter for all ten rotor rows expressed by 140 probability density functions. The probabilistic simulation utilizes the parametric scatter information for generating 200 virtual compressors. The CFD analysis provides the performance of these compressors by calculating speed lines. Postprocessing methods are applied to statistically analyze the obtained results. It was found that the global performance parameters show a significantly wider scatter range for higher back pressure levels. The correlation coefficient and the coefficient of importance are utilized to identify the sensitivity of the results to the geometric parameters. It turned out that the sensitivities strongly shift for different operating points. While the leading edge geometry of all rotor rows dominantly influences the overall performance at maximum efficiency, the camber line parameters of the front stages become more important for higher back pressure levels. The analysis of the individual stage performance confirms the determining importance of the front stages—especially for highly throttled operating conditions. This leads to conclusions regarding the robustness of the overall HPC, which is principally determined by the efficiency and pressure rise of the front stages. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Impact of manufacturing variability on multistage high-pressure compressor performance [texte imprimé] / Alexander Lange, Auteur ; Matthias Voigt, Auteur ; Konrad Vogeler, Auteur . - 2012 . - 08 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Mots-clés : multistage high-pressure compressor (HPC); manufacturing process; rotor rows Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The present paper introduces a novel approach for considering manufacturing variability in the numerical simulation of a multistage high-pressure compressor (HPC). The manufacturing process is investigated by analyzing three of a total of ten rotor rows. Therefore, 150 blades of each of the three rows were 3D scanned to obtain surface meshes of real blades. The deviation of a scanned blade to the design intent is quantified by a vector of 14 geometric parameters. Interpolating the statistical properties of these parameters provides the manufacturing scatter for all ten rotor rows expressed by 140 probability density functions. The probabilistic simulation utilizes the parametric scatter information for generating 200 virtual compressors. The CFD analysis provides the performance of these compressors by calculating speed lines. Postprocessing methods are applied to statistically analyze the obtained results. It was found that the global performance parameters show a significantly wider scatter range for higher back pressure levels. The correlation coefficient and the coefficient of importance are utilized to identify the sensitivity of the results to the geometric parameters. It turned out that the sensitivities strongly shift for different operating points. While the leading edge geometry of all rotor rows dominantly influences the overall performance at maximum efficiency, the camber line parameters of the front stages become more important for higher back pressure levels. The analysis of the individual stage performance confirms the determining importance of the front stages—especially for highly throttled operating conditions. This leads to conclusions regarding the robustness of the overall HPC, which is principally determined by the efficiency and pressure rise of the front stages. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Effects of charge preheating methods on the combustion phasing limitations of an HCCI engine with negative valve overlap / Laura Manofsky Olesky in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 12 p.
Titre : Effects of charge preheating methods on the combustion phasing limitations of an HCCI engine with negative valve overlap Type de document : texte imprimé Auteurs : Laura Manofsky Olesky, Auteur ; Jiri Vavra, Auteur ; Dennis Assanis, Auteur Année de publication : 2012 Article en page(s) : 12 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : homogeneous charge compression ignition (HCCI); fuel consumption; spark-ignited (SI) combustion Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Homogeneous charge compression ignition (HCCI) has the potential to reduce both fuel consumption and NOx emissions compared to normal spark-ignited (SI) combustion. For a relatively low compression ratio engine, high unburned temperatures are needed to initiate HCCI combustion, which is achieved with large amounts of internal residual or by heating the intake charge. The amount of residual in the combustion chamber is controlled by a recompression valve strategy, which relies on negative valve overlap (NVO) to trap residual gases in the cylinder. A single-cylinder research engine with fully-flexible valve actuation is used to explore the limits of HCCI combustion phasing at a load of ~3 bar gross indicated mean effective pressure (IMEPg). This is done by performing two individual sweeps of (a) internal residual fraction (via NVO) and (b) intake air temperature to control combustion phasing. It is found that increasing both of these variables advances the phasing of HCCI combustion, which leads to increased NOx emissions and a higher ringing intensity. On the other hand, a reduction in these variables leads to greater emissions of CO and HC, as well as a decrease in combustion stability. A direct comparison of the two sweeps suggests that the points with elevated intake temperatures are more prone to ringing as combustion is advanced and less prone to instability and misfire as combustion is retarded. This behavior can be explained by compositional differences (air versus residual gas dilution) which lead to variations in burn rate and peak temperature. As a final study, two additional NVO sweeps are performed while holding intake temperature constant at 30 °C and 90 °C. Again, it is seen that for higher intake temperatures, combustion is more susceptible to ringing at advanced timings and more resistant to instability/misfire at retarded timings. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Effects of charge preheating methods on the combustion phasing limitations of an HCCI engine with negative valve overlap [texte imprimé] / Laura Manofsky Olesky, Auteur ; Jiri Vavra, Auteur ; Dennis Assanis, Auteur . - 2012 . - 12 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 12 p.
Mots-clés : homogeneous charge compression ignition (HCCI); fuel consumption; spark-ignited (SI) combustion Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Homogeneous charge compression ignition (HCCI) has the potential to reduce both fuel consumption and NOx emissions compared to normal spark-ignited (SI) combustion. For a relatively low compression ratio engine, high unburned temperatures are needed to initiate HCCI combustion, which is achieved with large amounts of internal residual or by heating the intake charge. The amount of residual in the combustion chamber is controlled by a recompression valve strategy, which relies on negative valve overlap (NVO) to trap residual gases in the cylinder. A single-cylinder research engine with fully-flexible valve actuation is used to explore the limits of HCCI combustion phasing at a load of ~3 bar gross indicated mean effective pressure (IMEPg). This is done by performing two individual sweeps of (a) internal residual fraction (via NVO) and (b) intake air temperature to control combustion phasing. It is found that increasing both of these variables advances the phasing of HCCI combustion, which leads to increased NOx emissions and a higher ringing intensity. On the other hand, a reduction in these variables leads to greater emissions of CO and HC, as well as a decrease in combustion stability. A direct comparison of the two sweeps suggests that the points with elevated intake temperatures are more prone to ringing as combustion is advanced and less prone to instability and misfire as combustion is retarded. This behavior can be explained by compositional differences (air versus residual gas dilution) which lead to variations in burn rate and peak temperature. As a final study, two additional NVO sweeps are performed while holding intake temperature constant at 30 °C and 90 °C. Again, it is seen that for higher intake temperatures, combustion is more susceptible to ringing at advanced timings and more resistant to instability/misfire at retarded timings. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Empirical study of simultaneously low NOx and soot combustion with diesel and ethanol fuels in diesel engine / Xiaoye Han in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 07 p.
Titre : Empirical study of simultaneously low NOx and soot combustion with diesel and ethanol fuels in diesel engine Type de document : texte imprimé Auteurs : Xiaoye Han, Auteur ; Kelvin Xie, Auteur ; Jimi Tjong, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : low temperature combustion (LTC); volatile fuels; NOx and soot emissions Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Diesel low temperature combustion (LTC) is capable of producing diesel-like efficiency while emitting ultra-low nitrogen oxides (NOx) and soot emissions. Previous work indicates that well-controlled single-shot injection with exhaust gas recirculation (EGR) is an operative way of achieving diesel LTC from low to mid engine loads. However, as the engine load is increased, demanding intake boost and injection pressure are necessary to suppress high soot emissions during the transition to LTC. The use of volatile fuels such as ethanol is deemed capable of promoting the cylinder charge homogeneity, which helps to overcome the high soot challenge and, thus, potentially expand the engine LTC load range. In this work, LTC investigations were carried out on a high compression ratio (18.2:1) engine. Engine tests were first conducted with diesel and LTC operation at 8 bar indicated mean effective pressure (IMEP) was enabled by sophisticated control of the injection pressure, injection timing, intake boost, and EGR application. The engine performance was characterized as the baseline, and the challenges were identified. Further tests were aimed to improve the engine performance against these baseline results. Experiments were, hence, conducted on the same engine with secondary ethanol port fuelling (PF). Single-shot diesel direct injection (DI) was applied close to top dead center (TDC) to ignite the ethanol and control the combustion phasing. The control sensitivity was studied through injection timing sweeps and EGR sweeps. Additional tests were performed to investigate the ethanol-to-diesel ratio effects on the mixture reactivity and the engine emissions. Engine load was also raised to 16.4 bar IMEP while keeping the simultaneously low NOx and soot emissions. Significant improvement of engine control and emissions was achieved by the DI+PF strategy. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Empirical study of simultaneously low NOx and soot combustion with diesel and ethanol fuels in diesel engine [texte imprimé] / Xiaoye Han, Auteur ; Kelvin Xie, Auteur ; Jimi Tjong, Auteur . - 2012 . - 07 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 07 p.
Mots-clés : low temperature combustion (LTC); volatile fuels; NOx and soot emissions Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Diesel low temperature combustion (LTC) is capable of producing diesel-like efficiency while emitting ultra-low nitrogen oxides (NOx) and soot emissions. Previous work indicates that well-controlled single-shot injection with exhaust gas recirculation (EGR) is an operative way of achieving diesel LTC from low to mid engine loads. However, as the engine load is increased, demanding intake boost and injection pressure are necessary to suppress high soot emissions during the transition to LTC. The use of volatile fuels such as ethanol is deemed capable of promoting the cylinder charge homogeneity, which helps to overcome the high soot challenge and, thus, potentially expand the engine LTC load range. In this work, LTC investigations were carried out on a high compression ratio (18.2:1) engine. Engine tests were first conducted with diesel and LTC operation at 8 bar indicated mean effective pressure (IMEP) was enabled by sophisticated control of the injection pressure, injection timing, intake boost, and EGR application. The engine performance was characterized as the baseline, and the challenges were identified. Further tests were aimed to improve the engine performance against these baseline results. Experiments were, hence, conducted on the same engine with secondary ethanol port fuelling (PF). Single-shot diesel direct injection (DI) was applied close to top dead center (TDC) to ignite the ethanol and control the combustion phasing. The control sensitivity was studied through injection timing sweeps and EGR sweeps. Additional tests were performed to investigate the ethanol-to-diesel ratio effects on the mixture reactivity and the engine emissions. Engine load was also raised to 16.4 bar IMEP while keeping the simultaneously low NOx and soot emissions. Significant improvement of engine control and emissions was achieved by the DI+PF strategy. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Quantifying cyclic variability in a multicylinder HCCI engine with high residuals / Erik Hellström in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Titre : Quantifying cyclic variability in a multicylinder HCCI engine with high residuals Type de document : texte imprimé Auteurs : Erik Hellström, Auteur ; Jacob Larimore, Auteur ; Stefanopoulou, Anna, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : homogeneous charge compression ignition; Cyclic variability; multicylinder engine Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Cyclic variability (CV) in lean homogeneous charge compression ignition (HCCI) combustion at the limits of operation is a known phenomenon, and this work aims at investigating the dominant effects for the cycle evolution at these conditions in a multicylinder engine. Experiments are performed in a four-cylinder engine at the operating limits at late phasing of lean HCCI operation with negative valve overlap (nvo). A combustion analysis method that estimates the unburned fuel mass on a per-cycle basis is applied on both main combustion and the nvo period revealing and quantifying the dominant effects for the cycle evolution at high CV. The interpretation of the results and comparisons with data from a single-cylinder engine indicate that, at high CV, the evolution of combustion phasing is dominated by low-order deterministic couplings similar to the single-cylinder behavior. Variations, such as air flow and wall temperature, between cylinders strongly influence the level of CV but the evolution of the combustion phasing is governed by the interactions between engine cycles of the individual cylinders. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Quantifying cyclic variability in a multicylinder HCCI engine with high residuals [texte imprimé] / Erik Hellström, Auteur ; Jacob Larimore, Auteur ; Stefanopoulou, Anna, Auteur . - 2012 . - 08 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Mots-clés : homogeneous charge compression ignition; Cyclic variability; multicylinder engine Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Cyclic variability (CV) in lean homogeneous charge compression ignition (HCCI) combustion at the limits of operation is a known phenomenon, and this work aims at investigating the dominant effects for the cycle evolution at these conditions in a multicylinder engine. Experiments are performed in a four-cylinder engine at the operating limits at late phasing of lean HCCI operation with negative valve overlap (nvo). A combustion analysis method that estimates the unburned fuel mass on a per-cycle basis is applied on both main combustion and the nvo period revealing and quantifying the dominant effects for the cycle evolution at high CV. The interpretation of the results and comparisons with data from a single-cylinder engine indicate that, at high CV, the evolution of combustion phasing is dominated by low-order deterministic couplings similar to the single-cylinder behavior. Variations, such as air flow and wall temperature, between cylinders strongly influence the level of CV but the evolution of the combustion phasing is governed by the interactions between engine cycles of the individual cylinders. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...]
Exemplaires
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
aucun exemplaire |