Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Meunier-Guttin-Cluzel, Siegfried
Documents disponibles écrits par cet auteur
Affiner la rechercheDynamiques non linéaires, chaos et effets thermiques / Gouesbet, Gérard in Techniques de l'Ingénieur BE, Vol. BE1 (Trimestriel)
[article]
in Techniques de l'Ingénieur BE > Vol. BE1 (Trimestriel) . - 23 p.
Titre : Dynamiques non linéaires, chaos et effets thermiques Type de document : texte imprimé Auteurs : Gouesbet, Gérard, Auteur ; Meunier-Guttin-Cluzel, Siegfried, Auteur Année de publication : 2007 Article en page(s) : 23 p. Note générale : Génie Energétique Langues : Français (fre) Mots-clés : Dynamiques Chaos Effets thermiques REFERENCE : BE 8 110 DEWEY : 621.042 Date : Juillet 2003 En ligne : http://www.techniques-ingenieur.fr [article] Dynamiques non linéaires, chaos et effets thermiques [texte imprimé] / Gouesbet, Gérard, Auteur ; Meunier-Guttin-Cluzel, Siegfried, Auteur . - 2007 . - 23 p.
Génie Energétique
Langues : Français (fre)
in Techniques de l'Ingénieur BE > Vol. BE1 (Trimestriel) . - 23 p.
Mots-clés : Dynamiques Chaos Effets thermiques REFERENCE : BE 8 110 DEWEY : 621.042 Date : Juillet 2003 En ligne : http://www.techniques-ingenieur.fr Dynamiques non linéaires, chaos et effets thermiques / Gouesbet, Gérard
in Techniques de l'ingénieur : Physique énergétique Ti201. Thermodynamique et énergétique / Feidt, Michel
Titre : Dynamiques non linéaires, chaos et effets thermiques : réf. internet BE8110 Type de document : texte imprimé Auteurs : Gouesbet, Gérard, Auteur ; Meunier-Guttin-Cluzel, Siegfried, Auteur Année de publication : 2003 Importance : p. 407-429 Note générale : Bibliogr. p. 426-429 Langues : Français (fre) Mots-clés : Systèmes non linéairtes -- Comportement chaotique , Bifurcation , Phénomènes thermiques Résumé : Cet article s'intéresse à la dynamique des systèmes non linéaires, et en particulier aux comportements chaotiques. L’imprédictibilité de ces comportements chaotiques au-delà d'un certain horizon temporel est la conséquence de leur sensibilité aux conditions initiales. Elle implique que, dans un espace des phases, deux trajectoires chaotiques, initialement proches l’une de l’autre, s’éloignent exponentiellement au cours du temps. Il existe donc un horizon de prédictabilité qui n’est pas infini. Note de contenu : Sommaire:
1. Dynamique des systèmes non linéaires. Systèmes dissipatifs
2. Comportements dynamiques : du point fixe au chaos
3. Attracteurs chaotiques à temps continu
4. Applications chaotiques
5. Stabilité et bifurcations
6. Caractérisations
7. Reconstructions d'équations du mouvement
8. Applications de ces notions aux phénomènes thermiques
9. Conclusion
in Techniques de l'ingénieur : Physique énergétique Ti201. Thermodynamique et énergétique / Feidt, Michel
Dynamiques non linéaires, chaos et effets thermiques : réf. internet BE8110 [texte imprimé] / Gouesbet, Gérard, Auteur ; Meunier-Guttin-Cluzel, Siegfried, Auteur . - 2003 . - p. 407-429.
Bibliogr. p. 426-429
Langues : Français (fre)
Mots-clés : Systèmes non linéairtes -- Comportement chaotique , Bifurcation , Phénomènes thermiques Résumé : Cet article s'intéresse à la dynamique des systèmes non linéaires, et en particulier aux comportements chaotiques. L’imprédictibilité de ces comportements chaotiques au-delà d'un certain horizon temporel est la conséquence de leur sensibilité aux conditions initiales. Elle implique que, dans un espace des phases, deux trajectoires chaotiques, initialement proches l’une de l’autre, s’éloignent exponentiellement au cours du temps. Il existe donc un horizon de prédictabilité qui n’est pas infini. Note de contenu : Sommaire:
1. Dynamique des systèmes non linéaires. Systèmes dissipatifs
2. Comportements dynamiques : du point fixe au chaos
3. Attracteurs chaotiques à temps continu
4. Applications chaotiques
5. Stabilité et bifurcations
6. Caractérisations
7. Reconstructions d'équations du mouvement
8. Applications de ces notions aux phénomènes thermiques
9. ConclusionExemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire