Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Mylonakis, George
Documents disponibles écrits par cet auteur
Affiner la recherchePlastic input motion / Elia Voyagaki in Journal of engineering mechanics, Vol. 138 N° 7 (Juillet 2012)
[article]
in Journal of engineering mechanics > Vol. 138 N° 7 (Juillet 2012) . - pp.749–760
Titre : Plastic input motion : Transformation for the response of yielding oscillators Type de document : texte imprimé Auteurs : Elia Voyagaki, Auteur ; Mylonakis, George, Auteur ; Ioannis N. Psycharis, Auteur Année de publication : 2012 Article en page(s) : pp.749–760 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Nonlinear response Yielding oscillator Scaling Closed-form solution Near-fault motion Pulse Dynamics Earthquake response Résumé : A transformation method is presented for the response of yielding oscillators to dynamic loading. The method employs a translation in the ordinates and the abscissa of the excitation function by means of a pair of parameters uniquely dependent on the yielding resistance and the vibrational characteristics of the system. By this approach: (1) the differential operator becomes linearlike, with the nonlinearity transferred to the right-hand side; (2) the initial conditions are simplified; and (3) the modified forcing term becomes uniquely associated with the development of plastic deformation. The theory is applied to various yielding oscillators subjected to idealized earthquake pulses, with the modified excitation function termed plastic input motion (PIM). A procedure for applying the method to general waveforms is provided. The coordinates of PIM may be discontinuous and significantly smaller than those of the original excitation function, as a considerable amount of ground acceleration is devoted to overcoming the elastic resistance of the system. The theory can be useful in earthquake engineering by offering a replacement to physical ground motions with system-dependent PIMs for establishing demand indices. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000373 [article] Plastic input motion : Transformation for the response of yielding oscillators [texte imprimé] / Elia Voyagaki, Auteur ; Mylonakis, George, Auteur ; Ioannis N. Psycharis, Auteur . - 2012 . - pp.749–760.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 138 N° 7 (Juillet 2012) . - pp.749–760
Mots-clés : Nonlinear response Yielding oscillator Scaling Closed-form solution Near-fault motion Pulse Dynamics Earthquake response Résumé : A transformation method is presented for the response of yielding oscillators to dynamic loading. The method employs a translation in the ordinates and the abscissa of the excitation function by means of a pair of parameters uniquely dependent on the yielding resistance and the vibrational characteristics of the system. By this approach: (1) the differential operator becomes linearlike, with the nonlinearity transferred to the right-hand side; (2) the initial conditions are simplified; and (3) the modified forcing term becomes uniquely associated with the development of plastic deformation. The theory is applied to various yielding oscillators subjected to idealized earthquake pulses, with the modified excitation function termed plastic input motion (PIM). A procedure for applying the method to general waveforms is provided. The coordinates of PIM may be discontinuous and significantly smaller than those of the original excitation function, as a considerable amount of ground acceleration is devoted to overcoming the elastic resistance of the system. The theory can be useful in earthquake engineering by offering a replacement to physical ground motions with system-dependent PIMs for establishing demand indices. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000373 Rigid block sliding to idealized acceleration pulses / Voyagaki, Elia in Journal of engineering mechanics, Vol. 138 N° 9 (Septembre 2012)
[article]
in Journal of engineering mechanics > Vol. 138 N° 9 (Septembre 2012) . - pp.1071–1083.
Titre : Rigid block sliding to idealized acceleration pulses Type de document : texte imprimé Auteurs : Voyagaki, Elia, Auteur ; Mylonakis, George, Auteur ; Ioannis N. Psycharis, Auteur Année de publication : 2012 Article en page(s) : pp.1071–1083. Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Sliding Closed-form solution Near-fault Pulse Asymmetric friction Stick-slip effect Résumé : New analytical solutions are derived for the frictional sliding of rigid blocks to idealized ground acceleration pulses. These excitations are indicative of near-fault earthquake motions affected by forward fault-rupture directivity, which may inflict large permanent displacements in the absence of substantial frictional resistance at the sliding interface. The scope of this study is threefold: (1) to derive analytical solutions for a wide set of idealized pulses; (2) to investigate the effects of symmetric and asymmetric sliding under both unilateral and bilateral excitation conditions; and (3) to explore alternative normalization schemes of peak sliding with reference to peak pulse acceleration, velocity, duration, and shape. A generalized exponential function, capable of simulating an infinite number of pulse waveforms based on a single parameter, is employed to this end. Results are presented in the form of dimensionless closed-form expressions and graphs that provide insight into the physics of the nonlinear problem. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000418 [article] Rigid block sliding to idealized acceleration pulses [texte imprimé] / Voyagaki, Elia, Auteur ; Mylonakis, George, Auteur ; Ioannis N. Psycharis, Auteur . - 2012 . - pp.1071–1083.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 138 N° 9 (Septembre 2012) . - pp.1071–1083.
Mots-clés : Sliding Closed-form solution Near-fault Pulse Asymmetric friction Stick-slip effect Résumé : New analytical solutions are derived for the frictional sliding of rigid blocks to idealized ground acceleration pulses. These excitations are indicative of near-fault earthquake motions affected by forward fault-rupture directivity, which may inflict large permanent displacements in the absence of substantial frictional resistance at the sliding interface. The scope of this study is threefold: (1) to derive analytical solutions for a wide set of idealized pulses; (2) to investigate the effects of symmetric and asymmetric sliding under both unilateral and bilateral excitation conditions; and (3) to explore alternative normalization schemes of peak sliding with reference to peak pulse acceleration, velocity, duration, and shape. A generalized exponential function, capable of simulating an infinite number of pulse waveforms based on a single parameter, is employed to this end. Results are presented in the form of dimensionless closed-form expressions and graphs that provide insight into the physics of the nonlinear problem. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000418 Simple wave solution for seismic earth pressures on nonyielding walls / Panos Kloukinas in Journal of geotechnical and geoenvironmental engineering, Vol. 138 N° 12 (Décembre 2012)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 138 N° 12 (Décembre 2012) . - pp. 1514–1519
Titre : Simple wave solution for seismic earth pressures on nonyielding walls Type de document : texte imprimé Auteurs : Panos Kloukinas, Auteur ; Miltiadis Langousis, Auteur ; Mylonakis, George, Auteur Année de publication : 2013 Article en page(s) : pp. 1514–1519 Note générale : Géotechnique Langues : Anglais (eng) Mots-clés : Dynamic analysis Earth pressures Retaining walls Winkler model Earthquakes Résumé : Design of retaining walls for earthquake action is traditionally performed by limit analysis procedures—notably the classical solution of Mononobe-Okabe and its variants. Fundamental assumptions of these methods are (1) the static nature of seismic excitation, (2) the compliance in sliding and/or rocking of the base of the wall, (3) the shear failure of the backfill and the soil-wall interface, and (4) the prespecified point of application of soil thrust. Given the restrictive nature of these assumptions, alternative solutions based on wave-propagation theory have been developed that do not require failure of the backfill and thereby are applicable to nonyielding walls. Because of the complex mathematics involved, the use of these solutions in practice appears to be limited. A special integration technique inspired from the seminal work of Vlasov and Leontiev is presented, which simplifies the analysis by providing closed-form solutions suitable for practical use. ISSN : 1090-0241 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000721 [article] Simple wave solution for seismic earth pressures on nonyielding walls [texte imprimé] / Panos Kloukinas, Auteur ; Miltiadis Langousis, Auteur ; Mylonakis, George, Auteur . - 2013 . - pp. 1514–1519.
Géotechnique
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 138 N° 12 (Décembre 2012) . - pp. 1514–1519
Mots-clés : Dynamic analysis Earth pressures Retaining walls Winkler model Earthquakes Résumé : Design of retaining walls for earthquake action is traditionally performed by limit analysis procedures—notably the classical solution of Mononobe-Okabe and its variants. Fundamental assumptions of these methods are (1) the static nature of seismic excitation, (2) the compliance in sliding and/or rocking of the base of the wall, (3) the shear failure of the backfill and the soil-wall interface, and (4) the prespecified point of application of soil thrust. Given the restrictive nature of these assumptions, alternative solutions based on wave-propagation theory have been developed that do not require failure of the backfill and thereby are applicable to nonyielding walls. Because of the complex mathematics involved, the use of these solutions in practice appears to be limited. A special integration technique inspired from the seminal work of Vlasov and Leontiev is presented, which simplifies the analysis by providing closed-form solutions suitable for practical use. ISSN : 1090-0241 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000721 Yielding oscillator subjected to simple pulse waveforms: numerical analysis & closed-form solutions / Mylonakis, George in Earthquake engineering structural dynamics, Vol. 35 N°15 (Decembre 2006)
[article]
in Earthquake engineering structural dynamics > Vol. 35 N°15 (Decembre 2006) . - 1949 - 1974 p.
Titre : Yielding oscillator subjected to simple pulse waveforms: numerical analysis & closed-form solutions Type de document : texte imprimé Auteurs : Mylonakis, George, Editeur scientifique ; Voyagaki, Elia, Editeur scientifique Article en page(s) : 1949 - 1974 p. Note générale : Génie civil Langues : Anglais (eng) Mots-clés : Pulse Near fault yielding oscillator Numerical analysis Closed-form solution Case study Impulsion Près du défaut Rendement de l'oscillateur Analyse numérique Solution de forme close Etude de cas Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : Numerical and analytical solutions are presented for the elastic and inelastic response of single-degree-of-freedom yielding oscillators to idealized ground acceleration pulses. These motions are typical of near-fault earthquake recordings generated by forward rupture directivity and may inflict damage in the absence of substantial structural strength and ductility capacity. Four basic pulse waveforms are examined: (1) triangular; (2) sinusoidal; (3) exponential; and (4) rectangular. In the first part of the article, a numerical study is presented of the effect of oscillator period, strength, damping, post-yielding stiffness and number of excitation cycles, on inelastic response. Results are presented in the form of dimensionless graphs and regression formulas that elucidate the salient features of the problem. It is shown that conventional R-µ relations may significantly underestimate ductility demand imposed by near-fault motions.
The second part of the article concentrates on elastic-perfectly plastic oscillators. Closed-form solutions are derived for post-yielding response and associated ductility demand. It is shown that all three ground motion histories (i.e. acceleration, velocity, and displacement) control oscillator response - contrary to the widespread view that ground velocity alone is of leading importance. The derived solutions provide insight on the physics of inelastic response, which is often obscured by the complexity of numerical algorithms and actual earthquake motions. The model is evaluated against numerical results from near-field recordings. A case study is presented.
Des solutions numériques et analytiques sont présentées pour la réponse élastique et non élastique de la simple-degré-de-liberté rapportant des oscillateurs aux impulsions au sol idéalisées d'accélération. Ces mouvements sont typiques des enregistrements de tremblement de terre de proche-défaut produits par directivité vers l'avant de rupture et peuvent infliger des dommages en l'absence de la capacité substantielle de résistance de la structure et de ductilité. Quatre formes d'onde de base d'impulsion sont examinées : (1) triangulaire ; (2) sinusoïdal ; (3) exponentiel ; et (4) rectangulaire. Dans la première partie de l'article, une étude numérique est présentée de l'effet de la période d'oscillateur, force, atténuant, poteau-rapportant la rigidité et le nombre de cycles d'excitation, sur la réponse non élastique. Des résultats sont présentés sous forme de graphiques et de formules sans dimensions de régression qui élucident les dispositifs saillants du problème. On lui montre que les relations conventionnelles de R-µ peuvent de manière significative sous-estimer une demande de ductilité imposée par des mouvements de proche-défaut. La deuxième partie de l'article se concentre sur les oscillateurs en plastique élastiques-parfait. Des solutions de forme close sont dérivées pour la réponse derendement et la demande associée de ductilité. On lui montre que chacune des trois histoires au sol de mouvement (c.-à-d. accélération, vitesse, et déplacement) commande la réponse d'oscillateur - contraire à la vue répandue que seule la vitesse au sol est d'importance principale. Les solutions dérivées fournissent l'perspicacité sur la physique de la réponse non élastique, qui est souvent obscurcie par la complexité des algorithmes numériques et des mouvements réels de tremblement de terre. Le modèle est évalué contre des résultats numériques des enregistrements de proche-champ. Une étude de cas est présentée.ISSN : 0098-8847 RAMEAU : Oscillateur -- Analyse numérique En ligne : http://www3.interscience.wiley.com/cgi-bin/abstract/112780143/ABSTRACT [article] Yielding oscillator subjected to simple pulse waveforms: numerical analysis & closed-form solutions [texte imprimé] / Mylonakis, George, Editeur scientifique ; Voyagaki, Elia, Editeur scientifique . - 1949 - 1974 p.
Génie civil
Langues : Anglais (eng)
in Earthquake engineering structural dynamics > Vol. 35 N°15 (Decembre 2006) . - 1949 - 1974 p.
Mots-clés : Pulse Near fault yielding oscillator Numerical analysis Closed-form solution Case study Impulsion Près du défaut Rendement de l'oscillateur Analyse numérique Solution de forme close Etude de cas Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : Numerical and analytical solutions are presented for the elastic and inelastic response of single-degree-of-freedom yielding oscillators to idealized ground acceleration pulses. These motions are typical of near-fault earthquake recordings generated by forward rupture directivity and may inflict damage in the absence of substantial structural strength and ductility capacity. Four basic pulse waveforms are examined: (1) triangular; (2) sinusoidal; (3) exponential; and (4) rectangular. In the first part of the article, a numerical study is presented of the effect of oscillator period, strength, damping, post-yielding stiffness and number of excitation cycles, on inelastic response. Results are presented in the form of dimensionless graphs and regression formulas that elucidate the salient features of the problem. It is shown that conventional R-µ relations may significantly underestimate ductility demand imposed by near-fault motions.
The second part of the article concentrates on elastic-perfectly plastic oscillators. Closed-form solutions are derived for post-yielding response and associated ductility demand. It is shown that all three ground motion histories (i.e. acceleration, velocity, and displacement) control oscillator response - contrary to the widespread view that ground velocity alone is of leading importance. The derived solutions provide insight on the physics of inelastic response, which is often obscured by the complexity of numerical algorithms and actual earthquake motions. The model is evaluated against numerical results from near-field recordings. A case study is presented.
Des solutions numériques et analytiques sont présentées pour la réponse élastique et non élastique de la simple-degré-de-liberté rapportant des oscillateurs aux impulsions au sol idéalisées d'accélération. Ces mouvements sont typiques des enregistrements de tremblement de terre de proche-défaut produits par directivité vers l'avant de rupture et peuvent infliger des dommages en l'absence de la capacité substantielle de résistance de la structure et de ductilité. Quatre formes d'onde de base d'impulsion sont examinées : (1) triangulaire ; (2) sinusoïdal ; (3) exponentiel ; et (4) rectangulaire. Dans la première partie de l'article, une étude numérique est présentée de l'effet de la période d'oscillateur, force, atténuant, poteau-rapportant la rigidité et le nombre de cycles d'excitation, sur la réponse non élastique. Des résultats sont présentés sous forme de graphiques et de formules sans dimensions de régression qui élucident les dispositifs saillants du problème. On lui montre que les relations conventionnelles de R-µ peuvent de manière significative sous-estimer une demande de ductilité imposée par des mouvements de proche-défaut. La deuxième partie de l'article se concentre sur les oscillateurs en plastique élastiques-parfait. Des solutions de forme close sont dérivées pour la réponse derendement et la demande associée de ductilité. On lui montre que chacune des trois histoires au sol de mouvement (c.-à-d. accélération, vitesse, et déplacement) commande la réponse d'oscillateur - contraire à la vue répandue que seule la vitesse au sol est d'importance principale. Les solutions dérivées fournissent l'perspicacité sur la physique de la réponse non élastique, qui est souvent obscurcie par la complexité des algorithmes numériques et des mouvements réels de tremblement de terre. Le modèle est évalué contre des résultats numériques des enregistrements de proche-champ. Une étude de cas est présentée.ISSN : 0098-8847 RAMEAU : Oscillateur -- Analyse numérique En ligne : http://www3.interscience.wiley.com/cgi-bin/abstract/112780143/ABSTRACT