Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Panagiotis Prinos
Documents disponibles écrits par cet auteur
Affiner la rechercheEstimation of extremes: conventional versus Bayesian techniques / Panagiota Galiatsatou in Journal of hydraulic research, Vol. 46 extra issue (Mars/Avril 2008)
[article]
in Journal of hydraulic research > Vol. 46 extra issue (Mars/Avril 2008) . - pp. 211-223
Titre : Estimation of extremes: conventional versus Bayesian techniques Titre original : Estimation des extrêmes: techniques conventionnelles contre Bayesiènnes Type de document : texte imprimé Auteurs : Panagiota Galiatsatou, Auteur ; Panagiotis Prinos, Auteur ; Agustin Sanchez-Arcilla, Auteur Article en page(s) : pp. 211-223 Note générale : Hydraulique
Résumé en FrançaisLangues : Anglais (eng) Mots-clés : Bayesian technique Log-transformed surge data ML estimators Near flat distribution Neighborhood information Parameter uncertainty Index. décimale : 627 Ingénierie des cours d'eau naturels, des ports, des rades et des cotes. Installations de navigation, de dragage, de récupération et de sauvetage. Barrages et centrales électriques hydrauliques Résumé : The Bayesian and Maximum Likelihood (ML) estimators of surges at two stations of the Dutch coast on the North Sea are compared herein. The ML approach is commonly used, while the Bayesian approach allows both for a parameter uncertainty and a randomness inclusion in future observations. In the Bayesian framework, two different ways of constructing prior distributions are examined, namely the near flat distributions for model parameters and the incorporation of information from neighborhood sites of that under consideration through the distribution of quantile differences. The Bayesian framework offers substantial advantages to analyze the extreme values in both cases. The analysis is also performed using log-transformed surge data. This selection is proven to be advantageous for naturally bounded variables and to better capture the “relative” character of extremes.
DEWEY : 627 ISSN : 0022-1686 En ligne : http://www.journalhydraulicresearch.com [article] Estimation of extremes: conventional versus Bayesian techniques = Estimation des extrêmes: techniques conventionnelles contre Bayesiènnes [texte imprimé] / Panagiota Galiatsatou, Auteur ; Panagiotis Prinos, Auteur ; Agustin Sanchez-Arcilla, Auteur . - pp. 211-223.
Hydraulique
Résumé en Français
Langues : Anglais (eng)
in Journal of hydraulic research > Vol. 46 extra issue (Mars/Avril 2008) . - pp. 211-223
Mots-clés : Bayesian technique Log-transformed surge data ML estimators Near flat distribution Neighborhood information Parameter uncertainty Index. décimale : 627 Ingénierie des cours d'eau naturels, des ports, des rades et des cotes. Installations de navigation, de dragage, de récupération et de sauvetage. Barrages et centrales électriques hydrauliques Résumé : The Bayesian and Maximum Likelihood (ML) estimators of surges at two stations of the Dutch coast on the North Sea are compared herein. The ML approach is commonly used, while the Bayesian approach allows both for a parameter uncertainty and a randomness inclusion in future observations. In the Bayesian framework, two different ways of constructing prior distributions are examined, namely the near flat distributions for model parameters and the incorporation of information from neighborhood sites of that under consideration through the distribution of quantile differences. The Bayesian framework offers substantial advantages to analyze the extreme values in both cases. The analysis is also performed using log-transformed surge data. This selection is proven to be advantageous for naturally bounded variables and to better capture the “relative” character of extremes.
DEWEY : 627 ISSN : 0022-1686 En ligne : http://www.journalhydraulicresearch.com Statistical models for bivariate extremal analysis of a spatial process / Panagiota Galiatsatou in Journal of hydraulic research, Vol. 46 extra issue (Mars/Avril 2008)
[article]
in Journal of hydraulic research > Vol. 46 extra issue (Mars/Avril 2008) . - pp. 257-270
Titre : Statistical models for bivariate extremal analysis of a spatial process Titre original : Modèles statistiques pour l'analyse extremal bivariate d'un processus spatial Type de document : texte imprimé Auteurs : Panagiota Galiatsatou, Auteur ; Panagiotis Prinos, Auteur Article en page(s) : pp. 257-270 Note générale : Hydraulique
Résumé en FrançaisLangues : Anglais (eng) Mots-clés : Bivariate extreme value models Coefficient of tail dependence Dependence measures Joint probability Point process Spatial process Threshold exceedance Index. décimale : 627 Ingénierie des cours d'eau naturels, des ports, des rades et des cotes. Installations de navigation, de dragage, de récupération et de sauvetage. Barrages et centrales électriques hydrauliques Résumé : In the present paper different dependence measures are examined to investigate the structure of a spatial process of storm surges in the Dutch part of the North Sea. Four different dependence measures are implemented to the data: (1) the correlation coefficient as well as the Spearman (rank) correlation of the sample, (2) the transformation of the variables to determine the marginal distributions, (3) the dependence measures (χ,-) and (4) the coefficient of tail dependence η. Two different approaches for modelling the threshold exceedances are examined, namely the implementation of bivariate extreme value models and the use of more general point process characterizations of extremal dependence. The strength of dependence appears to vary with the location as well as with the separation distance. It is also observed that the point process approach estimates are in general lower than those using the bivariate threshold exceedance models.
DEWEY : 627 ISSN : 0022-1686 En ligne : http://www.journalhydraulicresearch.com [article] Statistical models for bivariate extremal analysis of a spatial process = Modèles statistiques pour l'analyse extremal bivariate d'un processus spatial [texte imprimé] / Panagiota Galiatsatou, Auteur ; Panagiotis Prinos, Auteur . - pp. 257-270.
Hydraulique
Résumé en Français
Langues : Anglais (eng)
in Journal of hydraulic research > Vol. 46 extra issue (Mars/Avril 2008) . - pp. 257-270
Mots-clés : Bivariate extreme value models Coefficient of tail dependence Dependence measures Joint probability Point process Spatial process Threshold exceedance Index. décimale : 627 Ingénierie des cours d'eau naturels, des ports, des rades et des cotes. Installations de navigation, de dragage, de récupération et de sauvetage. Barrages et centrales électriques hydrauliques Résumé : In the present paper different dependence measures are examined to investigate the structure of a spatial process of storm surges in the Dutch part of the North Sea. Four different dependence measures are implemented to the data: (1) the correlation coefficient as well as the Spearman (rank) correlation of the sample, (2) the transformation of the variables to determine the marginal distributions, (3) the dependence measures (χ,-) and (4) the coefficient of tail dependence η. Two different approaches for modelling the threshold exceedances are examined, namely the implementation of bivariate extreme value models and the use of more general point process characterizations of extremal dependence. The strength of dependence appears to vary with the location as well as with the separation distance. It is also observed that the point process approach estimates are in general lower than those using the bivariate threshold exceedance models.
DEWEY : 627 ISSN : 0022-1686 En ligne : http://www.journalhydraulicresearch.com