Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Si Moussa, Chérif
Documents disponibles écrits par cet auteur
Affiner la rechercheModélisation des équilibres de phases à pressions élevées par les réseaux de neurones artificiels / Si Moussa, Chérif
Titre : Modélisation des équilibres de phases à pressions élevées par les réseaux de neurones artificiels Type de document : texte imprimé Auteurs : Si Moussa, Chérif, Auteur ; Ratiba Derriche, Directeur de thèse Editeur : [S.l.] : [s.n.] Année de publication : 2010 Importance : 217 f. Présentation : ill. Format : 30 cm. Accompagnement : 1 CD-ROM. Note générale : Thèse de Doctorat : Génie Chimique : Alger, Ecole Nationale Polytechnique : 2010
Bibliogr. f. 182 - 193. Annexes f. 194 - 217Langues : Français (fre) Mots-clés : Réseau de neurones artificiels
Equilibre liquide vapeur
Fluide supercritique
Equations d’état
Densité du solvantIndex. décimale : D000110 Résumé : Dans ce travail nous avons appliqué la modélisation neuronale aux données
expérimentales de la littérature dans le but de développer et de valider des modèles pour la corrélation et la prédiction des équilibres liquide vapeur à pressions élevées et de la solubilité de composés pharmaceutiques dans le dioxyde de carbone supercritique. Pour la recherche de la topologie du réseau de neurones optimal nous avons adopté la stratégie d’essai et erreur (trial and error), suggérée par plusieurs auteurs comme étant la stratégie la plus raisonnable, avec deux critères d’arrêt : vérification d’une fonction de performance (d’erreur) fixée à priori et la capacité de généralisation du réseau de neurones. En plus de l’excellente corrélation des données expérimentales, les trois modèles neuronaux utilisés pour le calcul de l’équilibre liquide vapeur de trois systèmes de mélanges binaires {(i) : dioxyde de carbone avec six esters ; (ii) : azote avec trois alcanes ; (iii) : diéthyle carbonate avec trois cétones plus 1,4-dioxane avec deux cycloalcanes et benzène} ont montré une très bonne capacité (prédictive) d’interpolation et même d’extrapolation dans certains cas. La comparaison des erreurs de prédictions des modèles neuronaux optimisés pour les systèmes à pressions élevées (systèmes (i) et (ii)) avec celles de certaines équations d’état cubiques (Peng Robinson, Soave Redlich Kwong, Patel Teja Valderrama) même l’équation d’état à fondement théorique (PC-SAFT) à montré l’avantage des modèles neuronaux. Pour le système (iii) à basse pression la comparaison des erreurs de prédiction du modèle neuronal avec celles des modèles de coefficient d’activité (Wilson, NRTL, UNIQUAC, et ASOG) a aussi montré une nette supériorité du modèle neuronal. En ce qui concerne la modélisation de la solubilité de solutés solides dans le dioxyde de carbone supercritique, les trois modèles neuronaux utilisés pour le calcul de la solubilité des composés pharmaceutiques de trois systèmes de mélanges binaires {(i) : quatre anti-inflammatoires non stéroïdiens; (ii) : onze composés d’activité thérapeutiques différentes (sept anti-inflammatoires non stéroïdiens, deux anti-HIV et deux anti-cancers) ; (iii) : cinq statines}, ont aussi montré une très bonne corrélations des données expérimentales. Nous avons comparé ces modèles avec plusieurs équations d’état cubiques combinées avec plusieurs règles de mélange et un certain nombre de modèles basés sur la densité du solvant où les prédictions des modèles neuronaux sont nettement meilleures.
L’approche neuronale utilisée dans ce travail s’avère très efficace pour les calculs des équilibres de phases d’une manière simple, fiable et robuste. Elle constitue ainsi une alternative crédible aux modèles classiques du moins pour le non expert dans le choix du modèle approprié pour un mélange dans un domaine de pression et de température donnés.Modélisation des équilibres de phases à pressions élevées par les réseaux de neurones artificiels [texte imprimé] / Si Moussa, Chérif, Auteur ; Ratiba Derriche, Directeur de thèse . - [S.l.] : [s.n.], 2010 . - 217 f. : ill. ; 30 cm. + 1 CD-ROM.
Thèse de Doctorat : Génie Chimique : Alger, Ecole Nationale Polytechnique : 2010
Bibliogr. f. 182 - 193. Annexes f. 194 - 217
Langues : Français (fre)
Mots-clés : Réseau de neurones artificiels
Equilibre liquide vapeur
Fluide supercritique
Equations d’état
Densité du solvantIndex. décimale : D000110 Résumé : Dans ce travail nous avons appliqué la modélisation neuronale aux données
expérimentales de la littérature dans le but de développer et de valider des modèles pour la corrélation et la prédiction des équilibres liquide vapeur à pressions élevées et de la solubilité de composés pharmaceutiques dans le dioxyde de carbone supercritique. Pour la recherche de la topologie du réseau de neurones optimal nous avons adopté la stratégie d’essai et erreur (trial and error), suggérée par plusieurs auteurs comme étant la stratégie la plus raisonnable, avec deux critères d’arrêt : vérification d’une fonction de performance (d’erreur) fixée à priori et la capacité de généralisation du réseau de neurones. En plus de l’excellente corrélation des données expérimentales, les trois modèles neuronaux utilisés pour le calcul de l’équilibre liquide vapeur de trois systèmes de mélanges binaires {(i) : dioxyde de carbone avec six esters ; (ii) : azote avec trois alcanes ; (iii) : diéthyle carbonate avec trois cétones plus 1,4-dioxane avec deux cycloalcanes et benzène} ont montré une très bonne capacité (prédictive) d’interpolation et même d’extrapolation dans certains cas. La comparaison des erreurs de prédictions des modèles neuronaux optimisés pour les systèmes à pressions élevées (systèmes (i) et (ii)) avec celles de certaines équations d’état cubiques (Peng Robinson, Soave Redlich Kwong, Patel Teja Valderrama) même l’équation d’état à fondement théorique (PC-SAFT) à montré l’avantage des modèles neuronaux. Pour le système (iii) à basse pression la comparaison des erreurs de prédiction du modèle neuronal avec celles des modèles de coefficient d’activité (Wilson, NRTL, UNIQUAC, et ASOG) a aussi montré une nette supériorité du modèle neuronal. En ce qui concerne la modélisation de la solubilité de solutés solides dans le dioxyde de carbone supercritique, les trois modèles neuronaux utilisés pour le calcul de la solubilité des composés pharmaceutiques de trois systèmes de mélanges binaires {(i) : quatre anti-inflammatoires non stéroïdiens; (ii) : onze composés d’activité thérapeutiques différentes (sept anti-inflammatoires non stéroïdiens, deux anti-HIV et deux anti-cancers) ; (iii) : cinq statines}, ont aussi montré une très bonne corrélations des données expérimentales. Nous avons comparé ces modèles avec plusieurs équations d’état cubiques combinées avec plusieurs règles de mélange et un certain nombre de modèles basés sur la densité du solvant où les prédictions des modèles neuronaux sont nettement meilleures.
L’approche neuronale utilisée dans ce travail s’avère très efficace pour les calculs des équilibres de phases d’une manière simple, fiable et robuste. Elle constitue ainsi une alternative crédible aux modèles classiques du moins pour le non expert dans le choix du modèle approprié pour un mélange dans un domaine de pression et de température donnés.Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Spécialité Etat_Exemplaire D000110B D000110 Papier + ressource électronique Bibliothèque Annexe Thèse de Doctorat Disponible Genie_chimique Consultation sur place/Téléchargeable D000110A D000110 Papier + ressource électronique Bibliothèque centrale Thèse de Doctorat Disponible Genie_chimique Consultation sur place/Téléchargeable Documents numériques
SI MOUSSA.Cherif.pdfURL