Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur R. Doostmohammadi
Documents disponibles écrits par cet auteur
Affiner la rechercheModeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques / M. Massinaei in Minerals engineering, Vol. 23 N° 2 (Janvier 2010)
[article]
in Minerals engineering > Vol. 23 N° 2 (Janvier 2010) . - pp. 83-90
Titre : Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques Type de document : texte imprimé Auteurs : M. Massinaei, Auteur ; R. Doostmohammadi, Auteur Article en page(s) : pp. 83-90 Note générale : Génie Minier Métallurgie Langues : Anglais (eng) Mots-clés : Froth flotation Flotation machines Modeling Neural networks Index. décimale : 622 Industrie minière Résumé : Previous studies in mechanical and column flotation cells have shown that bubble surface area flux (Sb) is an appropriate indicator of gas dispersion in a flotation cell which has a relatively strong correlation with flotation rate constant.
In the present investigation, based on extensive tests conducted in an industrial Metso Minerals CISA flotation column (4 m in diameter and 12 m in height) in a rougher circuit, Sb as a function of the most significant operating variables which affect gas dispersion in a flotation column (i.e. superficial gas velocity, slurry density (solids%) and frother dosage/type) was modeled using artificial neural network (ANN) and statistical (non-linear regression) techniques.
The models were developed taking into consideration a data set consisting of 82 experimental tests conducted in an industrial rougher column (at a copper concentrator in Iran) operating under a variety of experimental conditions.
This paper outlines the development of the models and validation using a number of randomly selected datasets.
Limitations of the present models are discussed and comments and recommendations on further investigations are given.DEWEY : 622 ISSN : 0892-6875 En ligne : http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VDR-4XDKC9K-1&_user=6 [...] [article] Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques [texte imprimé] / M. Massinaei, Auteur ; R. Doostmohammadi, Auteur . - pp. 83-90.
Génie Minier Métallurgie
Langues : Anglais (eng)
in Minerals engineering > Vol. 23 N° 2 (Janvier 2010) . - pp. 83-90
Mots-clés : Froth flotation Flotation machines Modeling Neural networks Index. décimale : 622 Industrie minière Résumé : Previous studies in mechanical and column flotation cells have shown that bubble surface area flux (Sb) is an appropriate indicator of gas dispersion in a flotation cell which has a relatively strong correlation with flotation rate constant.
In the present investigation, based on extensive tests conducted in an industrial Metso Minerals CISA flotation column (4 m in diameter and 12 m in height) in a rougher circuit, Sb as a function of the most significant operating variables which affect gas dispersion in a flotation column (i.e. superficial gas velocity, slurry density (solids%) and frother dosage/type) was modeled using artificial neural network (ANN) and statistical (non-linear regression) techniques.
The models were developed taking into consideration a data set consisting of 82 experimental tests conducted in an industrial rougher column (at a copper concentrator in Iran) operating under a variety of experimental conditions.
This paper outlines the development of the models and validation using a number of randomly selected datasets.
Limitations of the present models are discussed and comments and recommendations on further investigations are given.DEWEY : 622 ISSN : 0892-6875 En ligne : http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VDR-4XDKC9K-1&_user=6 [...]