Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Turab Lookman
Documents disponibles écrits par cet auteur
Affiner la rechercheAb initio calculations of the uranium–hydrogen system / Christopher D. Taylor in Acta materialia, Vol. 58 N° 3 (Fevrier 2010)
[article]
in Acta materialia > Vol. 58 N° 3 (Fevrier 2010) . - pp. 1045-1055
Titre : Ab initio calculations of the uranium–hydrogen system : thermodynamics, hydrogen saturation of α-U and phase-transformation to UH3 Type de document : texte imprimé Auteurs : Christopher D. Taylor, Auteur ; Turab Lookman, Auteur ; R. Scott Lillard Article en page(s) : pp. 1045-1055 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Hydrides Thermodynamics Density functional theory Uranium Phase transformation Index. décimale : 669 Métallurgie Résumé : Total energy calculations based on density functional theory (DFT) have been performed for various uranium–hydrogen configurations relevant to the uranium hydriding reaction.
Herein, we investigate the transformation of the supersaturated α-U lattice to the α-UH3 lattice, where α-UH3 is believed to be a precursor to the formation of β-UH3, the stable phase of UH3.
The total energy DFT calculations for α- and β-UH3 were validated by comparing the predicted and measured decomposition temperatures of the hydride at standard pressure.
Calculated energies also confirm the metastability of α-UH3 vs. β-UH3.
Computational group theory and DFT calculations elucidate this transition, and indicate that the transformation itself is kinetically facile.
On the basis of this work, it is proposed that the formation of the volume-expanded, H-saturated α-U phase is the primary kinetic barrier to hydride formation.DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235556%23 [...] [article] Ab initio calculations of the uranium–hydrogen system : thermodynamics, hydrogen saturation of α-U and phase-transformation to UH3 [texte imprimé] / Christopher D. Taylor, Auteur ; Turab Lookman, Auteur ; R. Scott Lillard . - pp. 1045-1055.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 3 (Fevrier 2010) . - pp. 1045-1055
Mots-clés : Hydrides Thermodynamics Density functional theory Uranium Phase transformation Index. décimale : 669 Métallurgie Résumé : Total energy calculations based on density functional theory (DFT) have been performed for various uranium–hydrogen configurations relevant to the uranium hydriding reaction.
Herein, we investigate the transformation of the supersaturated α-U lattice to the α-UH3 lattice, where α-UH3 is believed to be a precursor to the formation of β-UH3, the stable phase of UH3.
The total energy DFT calculations for α- and β-UH3 were validated by comparing the predicted and measured decomposition temperatures of the hydride at standard pressure.
Calculated energies also confirm the metastability of α-UH3 vs. β-UH3.
Computational group theory and DFT calculations elucidate this transition, and indicate that the transformation itself is kinetically facile.
On the basis of this work, it is proposed that the formation of the volume-expanded, H-saturated α-U phase is the primary kinetic barrier to hydride formation.DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235556%23 [...] Ab initio calculations of the uranium–hydrogen system / Christopher D. Taylor in Acta materialia, Vol. 58 N° 3 (Fevrier 2010)
[article]
in Acta materialia > Vol. 58 N° 3 (Fevrier 2010) . - pp. 1045–1055
Titre : Ab initio calculations of the uranium–hydrogen system : Thermodynamics, hydrogen saturation of α-U and phase-transformation to UH3 Type de document : texte imprimé Auteurs : Christopher D. Taylor, Auteur ; Turab Lookman, Auteur ; R. Scott Lillard, Auteur Année de publication : 2011 Article en page(s) : pp. 1045–1055 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Hydrides Thermodynamics Density functional theory Uranium Phase transformation Résumé : Total energy calculations based on density functional theory (DFT) have been performed for various uranium–hydrogen configurations relevant to the uranium hydriding reaction. Herein, we investigate the transformation of the supersaturated α-U lattice to the α-UH3 lattice, where α-UH3 is believed to be a precursor to the formation of β-UH3, the stable phase of UH3. The total energy DFT calculations for α- and β-UH3 were validated by comparing the predicted and measured decomposition temperatures of the hydride at standard pressure. Calculated energies also confirm the metastability of α-UH3 vs. β-UH3. Computational group theory and DFT calculations elucidate this transition, and indicate that the transformation itself is kinetically facile. On the basis of this work, it is proposed that the formation of the volume-expanded, H-saturated α-U phase is the primary kinetic barrier to hydride formation. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007101 [article] Ab initio calculations of the uranium–hydrogen system : Thermodynamics, hydrogen saturation of α-U and phase-transformation to UH3 [texte imprimé] / Christopher D. Taylor, Auteur ; Turab Lookman, Auteur ; R. Scott Lillard, Auteur . - 2011 . - pp. 1045–1055.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 3 (Fevrier 2010) . - pp. 1045–1055
Mots-clés : Hydrides Thermodynamics Density functional theory Uranium Phase transformation Résumé : Total energy calculations based on density functional theory (DFT) have been performed for various uranium–hydrogen configurations relevant to the uranium hydriding reaction. Herein, we investigate the transformation of the supersaturated α-U lattice to the α-UH3 lattice, where α-UH3 is believed to be a precursor to the formation of β-UH3, the stable phase of UH3. The total energy DFT calculations for α- and β-UH3 were validated by comparing the predicted and measured decomposition temperatures of the hydride at standard pressure. Calculated energies also confirm the metastability of α-UH3 vs. β-UH3. Computational group theory and DFT calculations elucidate this transition, and indicate that the transformation itself is kinetically facile. On the basis of this work, it is proposed that the formation of the volume-expanded, H-saturated α-U phase is the primary kinetic barrier to hydride formation. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007101 Thermodynamic theory of dislocation-mediated plasticity / J.S. Langer in Acta materialia, Vol. 58 N° 10 (Juin 2010)
[article]
in Acta materialia > Vol. 58 N° 10 (Juin 2010) . - pp. 3718–3732
Titre : Thermodynamic theory of dislocation-mediated plasticity Type de document : texte imprimé Auteurs : J.S. Langer, Auteur ; Eran Bouchbinder, Auteur ; Turab Lookman, Auteur Année de publication : 2011 Article en page(s) : pp. 3718–3732 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Dislocation theory Hardening Thermodynamics Résumé : We reformulate the theory of polycrystalline plasticity, in externally driven, nonequilibrium situations, by writing equations of motion for the flow of energy and entropy associated with dislocations. Within this general framework, and using a minimal model of thermally assisted depinning with essentially only one adjustable parameter, we find that our theory fits the strain-hardening data for Cu over a wide range of temperatures and six decades of strain rate. We predict the transition between stage II and stage III hardening, including the observation that this transition occurs at smaller strains for higher temperatures. We also explain why strain-rate hardening is very weak up to large rates; and, with just one additional number, we accurately predict the crossover to power-law rate hardening in the strong-shock regime. Our analysis differs in several important respects from conventional dislocation-mediated continuum theories. We provide some historical background and discuss our rationale for these differences. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645410001540 [article] Thermodynamic theory of dislocation-mediated plasticity [texte imprimé] / J.S. Langer, Auteur ; Eran Bouchbinder, Auteur ; Turab Lookman, Auteur . - 2011 . - pp. 3718–3732.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 10 (Juin 2010) . - pp. 3718–3732
Mots-clés : Dislocation theory Hardening Thermodynamics Résumé : We reformulate the theory of polycrystalline plasticity, in externally driven, nonequilibrium situations, by writing equations of motion for the flow of energy and entropy associated with dislocations. Within this general framework, and using a minimal model of thermally assisted depinning with essentially only one adjustable parameter, we find that our theory fits the strain-hardening data for Cu over a wide range of temperatures and six decades of strain rate. We predict the transition between stage II and stage III hardening, including the observation that this transition occurs at smaller strains for higher temperatures. We also explain why strain-rate hardening is very weak up to large rates; and, with just one additional number, we accurately predict the crossover to power-law rate hardening in the strong-shock regime. Our analysis differs in several important respects from conventional dislocation-mediated continuum theories. We provide some historical background and discuss our rationale for these differences. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645410001540