Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur J. Narayan
Documents disponibles écrits par cet auteur
Affiner la rechercheNonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation / P. Pant in Acta materialia, Vol. 58 N° 3 (Fevrier 2010)
[article]
in Acta materialia > Vol. 58 N° 3 (Fevrier 2010) . - pp. 1097-1103
Titre : Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation Type de document : texte imprimé Auteurs : P. Pant, Auteur ; J. D. Budai, Auteur ; J. Narayan, Auteur Article en page(s) : pp. 1097-1103 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Epitaxy Nonpolar Anisotropic strain X-ray TEM Index. décimale : 669 Métallurgie Résumé : Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 −2 0) a-plane ZnO epitaxy on (1 −1 0 2) r-plane sapphire, where the in-plane misfit ranges from −1.5% for the [0 0 0 1]ZnOdouble vertical bar[1 −1 0 −1]sapphire to −18.3% for the [−1 1 0 0]ZnOdouble vertical bar[−1 −1 2 0]sapphire direction.
For the large misfit [−1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling.
For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature.
As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain.
Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane.
Based on the anisotropic strain relaxation observed along the orthogonal in-plane [−1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete.
These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits.DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235556%23 [...] [article] Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation [texte imprimé] / P. Pant, Auteur ; J. D. Budai, Auteur ; J. Narayan, Auteur . - pp. 1097-1103.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 3 (Fevrier 2010) . - pp. 1097-1103
Mots-clés : Epitaxy Nonpolar Anisotropic strain X-ray TEM Index. décimale : 669 Métallurgie Résumé : Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 −2 0) a-plane ZnO epitaxy on (1 −1 0 2) r-plane sapphire, where the in-plane misfit ranges from −1.5% for the [0 0 0 1]ZnOdouble vertical bar[1 −1 0 −1]sapphire to −18.3% for the [−1 1 0 0]ZnOdouble vertical bar[−1 −1 2 0]sapphire direction.
For the large misfit [−1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling.
For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature.
As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain.
Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane.
Based on the anisotropic strain relaxation observed along the orthogonal in-plane [−1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete.
These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits.DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235556%23 [...] Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation / P. Pant in Acta materialia, Vol. 58 N° 3 (Fevrier 2010)
[article]
in Acta materialia > Vol. 58 N° 3 (Fevrier 2010) . - pp. 1097–1103
Titre : Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation Type de document : texte imprimé Auteurs : P. Pant, Auteur ; J. D. Budai, Auteur ; J. Narayan, Auteur Année de publication : 2011 Article en page(s) : pp. 1097–1103 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Epitaxy Nonpolar Anisotropic strain X-ray TEM Résumé : Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 −2 0) a-plane ZnO epitaxy on (1 −1 0 2) r-plane sapphire, where the in-plane misfit ranges from −1.5% for the [0 0 0 1]ZnO‖[1 −1 0 −1]sapphire to −18.3% for the [−1 1 0 0]ZnO‖[−1 −1 2 0]sapphire direction. For the large misfit [−1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling. For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature. As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain. Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane. Based on the anisotropic strain relaxation observed along the orthogonal in-plane [−1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete. These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007204 [article] Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation [texte imprimé] / P. Pant, Auteur ; J. D. Budai, Auteur ; J. Narayan, Auteur . - 2011 . - pp. 1097–1103.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 3 (Fevrier 2010) . - pp. 1097–1103
Mots-clés : Epitaxy Nonpolar Anisotropic strain X-ray TEM Résumé : Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 −2 0) a-plane ZnO epitaxy on (1 −1 0 2) r-plane sapphire, where the in-plane misfit ranges from −1.5% for the [0 0 0 1]ZnO‖[1 −1 0 −1]sapphire to −18.3% for the [−1 1 0 0]ZnO‖[−1 −1 2 0]sapphire direction. For the large misfit [−1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling. For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature. As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain. Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane. Based on the anisotropic strain relaxation observed along the orthogonal in-plane [−1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete. These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007204