Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Flaibani, Marina
Documents disponibles écrits par cet auteur
Affiner la rechercheComputational modeling of cell growth heterogeneity in a perfused 3D scaffold / Flaibani, Marina in Industrial & engineering chemistry research, Vol. 49 N° 2 (Janvier 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 2 (Janvier 2010) . - pp 859–869
Titre : Computational modeling of cell growth heterogeneity in a perfused 3D scaffold Type de document : texte imprimé Auteurs : Flaibani, Marina, Auteur ; Magrofuoco, Enrico, Auteur ; Elvassore, Nicola, Auteur Année de publication : 2010 Article en page(s) : pp 859–869 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Cell heterogeneity Spatiotemporal evolution Computational model. Résumé : Our goal was to develop a computational model describing the spatiotemporal evolution of cell heterogeneity within a three-dimensional porous scaffold during cell growth in a perfusion bioreactor. The scaffold was assumed formed by an ensemble of independent parallel cylindrical channels with a defined diameter distribution. The total flow rate partitioning in each channel depends on the effective diameter, which is reduced by the cell growth on the channel wall. The mass balance for one metabolite and the cell volume balance were solved. For each channel diameter, the model simulation provide the spatiotemporal evolution of velocity, shear stress, metabolite concentration, and cell volume growth. In particular, all of these outcomes can be analyzed as a function of channel diameter providing an evaluation of cell property heterogeneity. The model describes that the cell growth can be substantially different in each channel diameter. For instance, in the small diameter channel, cell growth is limited by metabolite mass transport, whereas in the larger diameter channel, shear stress inhibits cell growth. This mathematical model could be an important tool for a priori estimation of the time variation of the cell volume fraction and its degree of heterogeneity as a function of operational parameters and scaffold pore size distribution. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900418g [article] Computational modeling of cell growth heterogeneity in a perfused 3D scaffold [texte imprimé] / Flaibani, Marina, Auteur ; Magrofuoco, Enrico, Auteur ; Elvassore, Nicola, Auteur . - 2010 . - pp 859–869.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 2 (Janvier 2010) . - pp 859–869
Mots-clés : Cell heterogeneity Spatiotemporal evolution Computational model. Résumé : Our goal was to develop a computational model describing the spatiotemporal evolution of cell heterogeneity within a three-dimensional porous scaffold during cell growth in a perfusion bioreactor. The scaffold was assumed formed by an ensemble of independent parallel cylindrical channels with a defined diameter distribution. The total flow rate partitioning in each channel depends on the effective diameter, which is reduced by the cell growth on the channel wall. The mass balance for one metabolite and the cell volume balance were solved. For each channel diameter, the model simulation provide the spatiotemporal evolution of velocity, shear stress, metabolite concentration, and cell volume growth. In particular, all of these outcomes can be analyzed as a function of channel diameter providing an evaluation of cell property heterogeneity. The model describes that the cell growth can be substantially different in each channel diameter. For instance, in the small diameter channel, cell growth is limited by metabolite mass transport, whereas in the larger diameter channel, shear stress inhibits cell growth. This mathematical model could be an important tool for a priori estimation of the time variation of the cell volume fraction and its degree of heterogeneity as a function of operational parameters and scaffold pore size distribution. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900418g