Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Liang, Jianing
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalysis of passive boost power converter for three-phase SR drive / Liang, Jianing in IEEE transactions on industrial electronics, Vol. 57 N° 9 (Septembre 2010)
[article]
in IEEE transactions on industrial electronics > Vol. 57 N° 9 (Septembre 2010) . - pp. 2961 - 2971
Titre : Analysis of passive boost power converter for three-phase SR drive Type de document : texte imprimé Auteurs : Liang, Jianing, Auteur ; Dong-Hee, Lee, Auteur ; Xu, Guoqing, Auteur Année de publication : 2011 Article en page(s) : pp. 2961 - 2971 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Fast demagnetization Passive boost converter Switched reluctance motor (SRM) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper presents a novel passive boost power converter and its analysis for a three-phase switched reluctance (SR) drive. The proposed simple passive circuit adds three diodes and one capacitor to the front end of a conventional asymmetric converter in order to obtain a high negative bias. Based on this passive power network, the terminal voltage of the converter side is at general dc-link voltage level in parallel mode and is up to a double dc-link voltage level in series mode. As a result, it can suppress the negative torque generation from the tail current and improve the output power. Combining a passive circuit with a three-phase asymmetric converter without phase-current overlap, the phase winding obtains the dc-link voltage in the excitation mode and the negative double dc-link voltage in the demagnetization mode. With the phase-current overlap, the dc-link voltage or the double dc-link voltage is dependent on the overlap current. The operation modes of the proposed converter are analyzed with a three-phase SR motor. The selection of the boost capacitor is considered, and a detailed analysis of current-overlap modes is presented. The compared simulation and experiments are done. The results verify the performance of the proposed converter. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5409583 [article] Analysis of passive boost power converter for three-phase SR drive [texte imprimé] / Liang, Jianing, Auteur ; Dong-Hee, Lee, Auteur ; Xu, Guoqing, Auteur . - 2011 . - pp. 2961 - 2971.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 57 N° 9 (Septembre 2010) . - pp. 2961 - 2971
Mots-clés : Fast demagnetization Passive boost converter Switched reluctance motor (SRM) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper presents a novel passive boost power converter and its analysis for a three-phase switched reluctance (SR) drive. The proposed simple passive circuit adds three diodes and one capacitor to the front end of a conventional asymmetric converter in order to obtain a high negative bias. Based on this passive power network, the terminal voltage of the converter side is at general dc-link voltage level in parallel mode and is up to a double dc-link voltage level in series mode. As a result, it can suppress the negative torque generation from the tail current and improve the output power. Combining a passive circuit with a three-phase asymmetric converter without phase-current overlap, the phase winding obtains the dc-link voltage in the excitation mode and the negative double dc-link voltage in the demagnetization mode. With the phase-current overlap, the dc-link voltage or the double dc-link voltage is dependent on the overlap current. The operation modes of the proposed converter are analyzed with a three-phase SR motor. The selection of the boost capacitor is considered, and a detailed analysis of current-overlap modes is presented. The compared simulation and experiments are done. The results verify the performance of the proposed converter. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5409583 A simple nonlinear logical torque sharing function for low-torque ripple SR drive / Lee, Dong-Hee in IEEE transactions on industrial electronics, Vol. 56 N° 8 (Août 2009)
[article]
in IEEE transactions on industrial electronics > Vol. 56 N° 8 (Août 2009) . - pp. 3021 - 3028
Titre : A simple nonlinear logical torque sharing function for low-torque ripple SR drive Type de document : texte imprimé Auteurs : Lee, Dong-Hee, Auteur ; Liang, Jianing, Auteur ; Lee, Zhen-Guo, Auteur Article en page(s) : pp. 3021 - 3028 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Nonlinear logical torque-sharing function (TSF) Swithed reluctance motor (SRM) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : A novel and simple nonlinear logical torque-sharing function (TSF) for a switched reluctance motor (SRM) drive is proposed. This novel scheme using nonlinear TSF manipulates currents in two adjacent phases during commutation, so that efficiency and torque ripple in an SRM drive can be considerably improved. For constant torque generation, the switching of one-phase windings is regulated, and torque reference for the other phase stays at the previous state under the condition of a certain current limit given by the overall drive power rating. Every torque state monitored by the nonlinear logical condition determines a regulated or nonregulated torque control among two phases overlapped in commutation region, where one phase is incoming to produce the majority of torque and the outgoing current in the other phase is decreasingly controlled by the logical condition. Due to the same switching state in a nonregulated phase and the reduction of commutation period by the proposed control method, the switching number can be significantly reduced, and hence, the switching loss can be reduced. In case that one-phase regulation cannot satisfy a proper torque reference required for minimum torque ripple operation, a two-phase regulation mode is employed in the novel nonlinear TSF. In order to include magnetic nonlinearity in torque control and decrease a current tail at the end of commutation, the current of the incoming phase needs to be controlled in an increasing manner, and at the same time, the outgoing phase current tracks on an opposite direction so that torque sharing between two phases can be smoothly achieved with a minimum current crossover. The proposed control scheme is verified by some computer simulations and experimental results. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5071298 [article] A simple nonlinear logical torque sharing function for low-torque ripple SR drive [texte imprimé] / Lee, Dong-Hee, Auteur ; Liang, Jianing, Auteur ; Lee, Zhen-Guo, Auteur . - pp. 3021 - 3028.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 56 N° 8 (Août 2009) . - pp. 3021 - 3028
Mots-clés : Nonlinear logical torque-sharing function (TSF) Swithed reluctance motor (SRM) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : A novel and simple nonlinear logical torque-sharing function (TSF) for a switched reluctance motor (SRM) drive is proposed. This novel scheme using nonlinear TSF manipulates currents in two adjacent phases during commutation, so that efficiency and torque ripple in an SRM drive can be considerably improved. For constant torque generation, the switching of one-phase windings is regulated, and torque reference for the other phase stays at the previous state under the condition of a certain current limit given by the overall drive power rating. Every torque state monitored by the nonlinear logical condition determines a regulated or nonregulated torque control among two phases overlapped in commutation region, where one phase is incoming to produce the majority of torque and the outgoing current in the other phase is decreasingly controlled by the logical condition. Due to the same switching state in a nonregulated phase and the reduction of commutation period by the proposed control method, the switching number can be significantly reduced, and hence, the switching loss can be reduced. In case that one-phase regulation cannot satisfy a proper torque reference required for minimum torque ripple operation, a two-phase regulation mode is employed in the novel nonlinear TSF. In order to include magnetic nonlinearity in torque control and decrease a current tail at the end of commutation, the current of the incoming phase needs to be controlled in an increasing manner, and at the same time, the outgoing phase current tracks on an opposite direction so that torque sharing between two phases can be smoothly achieved with a minimum current crossover. The proposed control scheme is verified by some computer simulations and experimental results. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5071298