Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Cholakov, Georgi St.
Documents disponibles écrits par cet auteur
Affiner la rechercheQuantitative structure−property relationships for prediction of phase equilibrium related properties / Shacham, Mordechai in Industrial & engineering chemistry research, Vol. 49 N° 2 (Janvier 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 2 (Janvier 2010) . - pp 900–912
Titre : Quantitative structure−property relationships for prediction of phase equilibrium related properties Type de document : texte imprimé Auteurs : Shacham, Mordechai, Auteur ; Cholakov, Georgi St., Auteur ; Stateva, Roumiana P., Auteur Année de publication : 2010 Article en page(s) : pp 900–912 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Predicting vapor Binary interaction Homologous series Structure property Phase equilibrium. Résumé : In this work, novel techniques for predicting vapor pressure and binary interaction coefficients for homologous series are developed based on the previously proposed targeted quantitative structure−property relationship (TQSPR) and QS2PR methods. For predicting vapor pressure variation as a function of temperature, a two-reference compound (TRC) QSPR method is suggested. This method uses two, structurally similar predictive compounds with available vapor pressure data to predict point by point the vapor pressure or the saturation temperature of a target compound. For the target compound, only structural information is required. The two variants of the method were applied to several homologous series. They demonstrate prediction of vapor pressure within experimental uncertainty, depending on the level of similarity between the predictive compounds and the target compound. A targeted QSPR method for prediction of the binary interaction coefficients (kij) in cubic equations of state for a compound with the members of its homologous series is also presented. The coefficients for the Soave−Redlich−Kwong and Peng−Robinson equations, used to test the method, were reproduced within the deviation of those obtained from regressed experimental data. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900807j [article] Quantitative structure−property relationships for prediction of phase equilibrium related properties [texte imprimé] / Shacham, Mordechai, Auteur ; Cholakov, Georgi St., Auteur ; Stateva, Roumiana P., Auteur . - 2010 . - pp 900–912.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 2 (Janvier 2010) . - pp 900–912
Mots-clés : Predicting vapor Binary interaction Homologous series Structure property Phase equilibrium. Résumé : In this work, novel techniques for predicting vapor pressure and binary interaction coefficients for homologous series are developed based on the previously proposed targeted quantitative structure−property relationship (TQSPR) and QS2PR methods. For predicting vapor pressure variation as a function of temperature, a two-reference compound (TRC) QSPR method is suggested. This method uses two, structurally similar predictive compounds with available vapor pressure data to predict point by point the vapor pressure or the saturation temperature of a target compound. For the target compound, only structural information is required. The two variants of the method were applied to several homologous series. They demonstrate prediction of vapor pressure within experimental uncertainty, depending on the level of similarity between the predictive compounds and the target compound. A targeted QSPR method for prediction of the binary interaction coefficients (kij) in cubic equations of state for a compound with the members of its homologous series is also presented. The coefficients for the Soave−Redlich−Kwong and Peng−Robinson equations, used to test the method, were reproduced within the deviation of those obtained from regressed experimental data. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900807j