Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur C. P. Lamarche
Documents disponibles écrits par cet auteur
Affiner la rechercheA Rosenbrock-W method for real-time dynamic substructuring and pseudo-dynamic testing / C. P. Lamarche in Earthquake engineering structural dynamics, Vol. 38 N° 9 (Juillet 2009)
[article]
in Earthquake engineering structural dynamics > Vol. 38 N° 9 (Juillet 2009) . - pp. 1071-1092
Titre : A Rosenbrock-W method for real-time dynamic substructuring and pseudo-dynamic testing Type de document : texte imprimé Auteurs : C. P. Lamarche, Auteur ; A. Bonelli, Auteur ; O. S. Bursi, Auteur Article en page(s) : pp. 1071-1092 Note générale : Génie Civil Langues : Anglais (eng) Mots-clés : Substructuring; Hybrid testing; Stability; Convergence ; Real-time testing; Jacobian Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : A variant of the Rosenbrock-W integration method is proposed for real-time dynamic substructuring and pseudo-dynamic testing. In this variant, an approximation of the Jacobian matrix that accounts for the properties of both the physical and numerical substructures is used throughout the analysis process. Only an initial estimate of the stiffness and damping properties of the physical components is required. It is demonstrated that the method is unconditionally stable provided that specific conditions are fulfilled and that the order accuracy can be maintained in the nonlinear regime without involving any matrix inversion while testing. The method also features controllable numerical energy dissipation characteristics and explicit expression of the target displacement and velocity vectors. The stability and accuracy of the proposed integration scheme are examined in the paper. The method has also been verified through hybrid testing performed of SDOF and MDOF structures with linear and highly nonlinear physical substructures. The results are compared with those obtained from the operator splitting method. An approach based on the modal decomposition principle is presented to predict the potential effect of experimental errors on the overall response during testing. ISSN : 0098-8847 En ligne : http://www3.interscience.wiley.com/journal/121632331/abstract [article] A Rosenbrock-W method for real-time dynamic substructuring and pseudo-dynamic testing [texte imprimé] / C. P. Lamarche, Auteur ; A. Bonelli, Auteur ; O. S. Bursi, Auteur . - pp. 1071-1092.
Génie Civil
Langues : Anglais (eng)
in Earthquake engineering structural dynamics > Vol. 38 N° 9 (Juillet 2009) . - pp. 1071-1092
Mots-clés : Substructuring; Hybrid testing; Stability; Convergence ; Real-time testing; Jacobian Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : A variant of the Rosenbrock-W integration method is proposed for real-time dynamic substructuring and pseudo-dynamic testing. In this variant, an approximation of the Jacobian matrix that accounts for the properties of both the physical and numerical substructures is used throughout the analysis process. Only an initial estimate of the stiffness and damping properties of the physical components is required. It is demonstrated that the method is unconditionally stable provided that specific conditions are fulfilled and that the order accuracy can be maintained in the nonlinear regime without involving any matrix inversion while testing. The method also features controllable numerical energy dissipation characteristics and explicit expression of the target displacement and velocity vectors. The stability and accuracy of the proposed integration scheme are examined in the paper. The method has also been verified through hybrid testing performed of SDOF and MDOF structures with linear and highly nonlinear physical substructures. The results are compared with those obtained from the operator splitting method. An approach based on the modal decomposition principle is presented to predict the potential effect of experimental errors on the overall response during testing. ISSN : 0098-8847 En ligne : http://www3.interscience.wiley.com/journal/121632331/abstract