Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Gueaieb, Wail
Documents disponibles écrits par cet auteur
Affiner la rechercheANN-based adaptive control of robotic manipulators with friction and joint elasticity / Chaoui, Hicham in IEEE transactions on industrial electronics, Vol. 56 N° 8 (Août 2009)
[article]
in IEEE transactions on industrial electronics > Vol. 56 N° 8 (Août 2009) . - pp. 3174 - 3187
Titre : ANN-based adaptive control of robotic manipulators with friction and joint elasticity Type de document : texte imprimé Auteurs : Chaoui, Hicham, Auteur ; Sicard, Pierre, Auteur ; Gueaieb, Wail, Auteur Article en page(s) : pp. 3174 - 3187 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Adptive control Flexible structures Intelligent control Manipulators Uncertain systems Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper proposes a control strategy based on artificial neural networks (ANNs) for a positioning system with a flexible transmission element, taking into account Coulomb friction for both motor and load, and using a variable learning rate for adaptation to parameter changes and accelerate convergence. A control structure consists of a feedforward ANN that approximates the manipulator's inverse dynamical model, an ANN feedback control law, a reference model, and the adaptation process of the ANNs with a variable learning rate. A supervisor that adapts the neural network's learning rate and a rule-based supervisor for online adaptation of the parameters of the reference model are proposed to maintain the stability of the system for large variations of load parameters. Simulation results highlight the performance of the controller to compensate the nonlinear friction terms, particularly Coulomb friction, and flexibility, and its robustness to the load and drive motor inertia parameter changes. Internal stability, which is a potential problem in such a system, is also verified. The controller is suitable for DSP and very large scale integration implementation and can be used to improve static and dynamic performances of electromechanical systems. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5071295 [article] ANN-based adaptive control of robotic manipulators with friction and joint elasticity [texte imprimé] / Chaoui, Hicham, Auteur ; Sicard, Pierre, Auteur ; Gueaieb, Wail, Auteur . - pp. 3174 - 3187.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 56 N° 8 (Août 2009) . - pp. 3174 - 3187
Mots-clés : Adptive control Flexible structures Intelligent control Manipulators Uncertain systems Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper proposes a control strategy based on artificial neural networks (ANNs) for a positioning system with a flexible transmission element, taking into account Coulomb friction for both motor and load, and using a variable learning rate for adaptation to parameter changes and accelerate convergence. A control structure consists of a feedforward ANN that approximates the manipulator's inverse dynamical model, an ANN feedback control law, a reference model, and the adaptation process of the ANNs with a variable learning rate. A supervisor that adapts the neural network's learning rate and a rule-based supervisor for online adaptation of the parameters of the reference model are proposed to maintain the stability of the system for large variations of load parameters. Simulation results highlight the performance of the controller to compensate the nonlinear friction terms, particularly Coulomb friction, and flexibility, and its robustness to the load and drive motor inertia parameter changes. Internal stability, which is a potential problem in such a system, is also verified. The controller is suitable for DSP and very large scale integration implementation and can be used to improve static and dynamic performances of electromechanical systems. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5071295