Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Chen, Jie-Yu
Documents disponibles écrits par cet auteur
Affiner la rechercheBifurcation analysis of ultrashort self-acting gas journal bearings for MEMS / Zhou, Jian-Bin in IEEE transactions on industrial electronics, Vol. 56 N° 8 (Août 2009)
[article]
in IEEE transactions on industrial electronics > Vol. 56 N° 8 (Août 2009) . - pp. 3188 - 3194
Titre : Bifurcation analysis of ultrashort self-acting gas journal bearings for MEMS Type de document : texte imprimé Auteurs : Zhou, Jian-Bin, Auteur ; Meng, Guang, Auteur ; Chen, Jie-Yu, Auteur Article en page(s) : pp. 3188 - 3194 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Bifurcation Gas journal bearing Microelectromechanical systems (MEMS) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : The development of microrotational devices in microelectromechanical systems (MEMS) has introduced a kind of ultrashort self-acting gas journal bearing with low length-to-diameter ratios. The bifurcation of ultrashort self-acting gas journal bearing-rotor systems is studied in this paper. The system is modeled as a rigid rotor supported by bearing forces as a result of gas viscosity and rotational speed. The spectral collection method is employed to discretize the nonlinear Reynolds equation describing the pressure distribution of the working fluid of the bearing. A system of nonlinear partial differential equations, which couples the fluid equation and the equations of the rotor motion, is presented and solved using the Runge-Kutta method. The bifurcation diagram, rotor center orbits, phase portraits, frequency spectra, and Poincare maps are utilized to analyze the dynamic characteristics of the rotor-bearing system for different operating conditions. The effects of the rotational speed and length-to-diameter ratio on the system dynamic behaviors are investigated with both low and high initial eccentricity ratios. The analyses show that the system exhibits complicated behaviors at low eccentricity ratios as a result of the self-excited whirl motion. For high eccentricity ratios, the bearing behavior comprises synchronous and subharmonic motions. A further understanding of the nonlinear dynamics of gas journal bearing in MEMS is given by the analysis results. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4914873 [article] Bifurcation analysis of ultrashort self-acting gas journal bearings for MEMS [texte imprimé] / Zhou, Jian-Bin, Auteur ; Meng, Guang, Auteur ; Chen, Jie-Yu, Auteur . - pp. 3188 - 3194.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 56 N° 8 (Août 2009) . - pp. 3188 - 3194
Mots-clés : Bifurcation Gas journal bearing Microelectromechanical systems (MEMS) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : The development of microrotational devices in microelectromechanical systems (MEMS) has introduced a kind of ultrashort self-acting gas journal bearing with low length-to-diameter ratios. The bifurcation of ultrashort self-acting gas journal bearing-rotor systems is studied in this paper. The system is modeled as a rigid rotor supported by bearing forces as a result of gas viscosity and rotational speed. The spectral collection method is employed to discretize the nonlinear Reynolds equation describing the pressure distribution of the working fluid of the bearing. A system of nonlinear partial differential equations, which couples the fluid equation and the equations of the rotor motion, is presented and solved using the Runge-Kutta method. The bifurcation diagram, rotor center orbits, phase portraits, frequency spectra, and Poincare maps are utilized to analyze the dynamic characteristics of the rotor-bearing system for different operating conditions. The effects of the rotational speed and length-to-diameter ratio on the system dynamic behaviors are investigated with both low and high initial eccentricity ratios. The analyses show that the system exhibits complicated behaviors at low eccentricity ratios as a result of the self-excited whirl motion. For high eccentricity ratios, the bearing behavior comprises synchronous and subharmonic motions. A further understanding of the nonlinear dynamics of gas journal bearing in MEMS is given by the analysis results. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4914873