Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Zhou, Zhi
Documents disponibles écrits par cet auteur
Affiner la rechercheTransforming traditional iris recognition systems to work in nonideal situations / Zhou, Zhi in IEEE transactions on industrial electronics, Vol. 56 N° 8 (Août 2009)
[article]
in IEEE transactions on industrial electronics > Vol. 56 N° 8 (Août 2009) . - pp. 3203 - 3213
Titre : Transforming traditional iris recognition systems to work in nonideal situations Type de document : texte imprimé Auteurs : Zhou, Zhi, Auteur ; Du, Yingzi, Auteur ; Belcher, Craig, Auteur Article en page(s) : pp. 3203 - 3213 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Iris quality evaluation Iris recognition system Iris segmentation evaluation Nonideal iris recognition Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : Under a nonideal situation, the image quality may vary. As a result, the traditional iris recognition systems would not work well. However, these kinds of iris recognition systems have been widely deployed in law enforcement and homeland security. It will be desirable to transform the traditional systems to perform in nonideal situations without a costly update. In this paper, we propose a method that upgrades the traditional iris recognition system to work on nonideal situations. The proposed method takes into consideration not only the effect of image quality but also the segmentation accuracy. It employs video-based image-processing techniques to quickly identify and eliminate the bad quality images from iris videos for further processing. The proposed method is tested on public databases using in-house recognition algorithms and also evaluated using a commercialized system. The research results show that the proposed methods can be used to improve the performance of iris recognition systems in a nonideal situation. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5071288 [article] Transforming traditional iris recognition systems to work in nonideal situations [texte imprimé] / Zhou, Zhi, Auteur ; Du, Yingzi, Auteur ; Belcher, Craig, Auteur . - pp. 3203 - 3213.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 56 N° 8 (Août 2009) . - pp. 3203 - 3213
Mots-clés : Iris quality evaluation Iris recognition system Iris segmentation evaluation Nonideal iris recognition Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : Under a nonideal situation, the image quality may vary. As a result, the traditional iris recognition systems would not work well. However, these kinds of iris recognition systems have been widely deployed in law enforcement and homeland security. It will be desirable to transform the traditional systems to perform in nonideal situations without a costly update. In this paper, we propose a method that upgrades the traditional iris recognition system to work on nonideal situations. The proposed method takes into consideration not only the effect of image quality but also the segmentation accuracy. It employs video-based image-processing techniques to quickly identify and eliminate the bad quality images from iris videos for further processing. The proposed method is tested on public databases using in-house recognition algorithms and also evaluated using a commercialized system. The research results show that the proposed methods can be used to improve the performance of iris recognition systems in a nonideal situation. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5071288