Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yannis Avrithis
Documents disponibles écrits par cet auteur
Affiner la rechercheSpatiotemporal saliency for video classification / Konstantinos Rapantzikos in Signal processing. Image communication, Vol. 24 N° 7 (Août 2009)
[article]
in Signal processing. Image communication > Vol. 24 N° 7 (Août 2009) . - pp. 557-571
Titre : Spatiotemporal saliency for video classification Type de document : texte imprimé Auteurs : Konstantinos Rapantzikos, Auteur ; Nicolas Tsapatsoulis, Auteur ; Yannis Avrithis, Auteur Article en page(s) : pp. 557-571 Note générale : Electronique Langues : Anglais (eng) Mots-clés : Spatiotemporal visual saliency Video classification Index. décimale : 621.382 Dispositifs électroniques utilisant les effets des corps solides. Dispositifs semi-conducteurs Résumé : Computer vision applications often need to process only a representative part of the visual input rather than the whole image/sequence.
Considerable research has been carried out into salient region detection methods based either on models emulating human visual attention (VA) mechanisms or on computational approximations.
Most of the proposed methods are bottom-up and their major goal is to filter out redundant visual information.
In this paper, we propose and elaborate on a saliency detection model that treats a video sequence as a spatiotemporal volume and generates a local saliency measure for each visual unit (voxel).
This computation involves an optimization process incorporating inter- and intra-feature competition at the voxel level.
Perceptual decomposition of the input, spatiotemporal center-surround interactions and the integration of heterogeneous feature conspicuity values are described and an experimental framework for video classification is set up.
This framework consists of a series of experiments that shows the effect of saliency in classification performance and let us draw conclusions on how well the detected salient regions represent the visual input.
A comparison is attempted that shows the potential of the proposed method.DEWEY : 361.382 ISSN : 0923-5965 En ligne : http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235640%23 [...] [article] Spatiotemporal saliency for video classification [texte imprimé] / Konstantinos Rapantzikos, Auteur ; Nicolas Tsapatsoulis, Auteur ; Yannis Avrithis, Auteur . - pp. 557-571.
Electronique
Langues : Anglais (eng)
in Signal processing. Image communication > Vol. 24 N° 7 (Août 2009) . - pp. 557-571
Mots-clés : Spatiotemporal visual saliency Video classification Index. décimale : 621.382 Dispositifs électroniques utilisant les effets des corps solides. Dispositifs semi-conducteurs Résumé : Computer vision applications often need to process only a representative part of the visual input rather than the whole image/sequence.
Considerable research has been carried out into salient region detection methods based either on models emulating human visual attention (VA) mechanisms or on computational approximations.
Most of the proposed methods are bottom-up and their major goal is to filter out redundant visual information.
In this paper, we propose and elaborate on a saliency detection model that treats a video sequence as a spatiotemporal volume and generates a local saliency measure for each visual unit (voxel).
This computation involves an optimization process incorporating inter- and intra-feature competition at the voxel level.
Perceptual decomposition of the input, spatiotemporal center-surround interactions and the integration of heterogeneous feature conspicuity values are described and an experimental framework for video classification is set up.
This framework consists of a series of experiments that shows the effect of saliency in classification performance and let us draw conclusions on how well the detected salient regions represent the visual input.
A comparison is attempted that shows the potential of the proposed method.DEWEY : 361.382 ISSN : 0923-5965 En ligne : http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235640%23 [...]