Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur M. Mrak
Documents disponibles écrits par cet auteur
Affiner la rechercheObject tracking in surveillance videos using compressed domain features from scalable bit-streams / K. Mehmood in Signal processing. Image communication, Vol. 24 N° 10 (Novembre 2009)
[article]
in Signal processing. Image communication > Vol. 24 N° 10 (Novembre 2009) . - pp. 814-824
Titre : Object tracking in surveillance videos using compressed domain features from scalable bit-streams Type de document : texte imprimé Auteurs : K. Mehmood, Auteur ; M. Mrak, Auteur ; J. Calic, Auteur Article en page(s) : pp. 814-824 Note générale : Electronique Langues : Anglais (eng) Mots-clés : Object tracking Scalable video coding Compressed domain analysis Motion vectors Index. décimale : 621.382 Dispositifs électroniques utilisant les effets des corps solides. Dispositifs semi-conducteurs Résumé : Recent developments in the video coding technology brought new possibilities of utilising inherently embedded features of the encoded bit-stream in applications such as video adaptation and analysis.
Due to the proliferation of surveillance videos there is a strong demand for highly efficient and reliable algorithms for object tracking.
This paper presents a new approach for the fast compressed domain analysis utilising motion data from the encoded bit-streams in order to achieve low-processing complexity of object tracking in the surveillance videos.
The algorithm estimates the trajectory of video objects by using compressed domain motion vectors extracted directly from standard H.264/MPEG-4 Advanced Video Coding (AVC) and Scalable Video Coding (SVC) bit-streams.
The experimental results show comparable tracking precision when evaluated against the standard algorithms in uncompressed domain, while maintaining low computational complexity and fast processing time, thus making the algorithm suitable for real time and streaming applications where good estimates of object trajectories have to be computed fast.DEWEY : 361.382 ISSN : 0923-5965 En ligne : http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235640%23 [...] [article] Object tracking in surveillance videos using compressed domain features from scalable bit-streams [texte imprimé] / K. Mehmood, Auteur ; M. Mrak, Auteur ; J. Calic, Auteur . - pp. 814-824.
Electronique
Langues : Anglais (eng)
in Signal processing. Image communication > Vol. 24 N° 10 (Novembre 2009) . - pp. 814-824
Mots-clés : Object tracking Scalable video coding Compressed domain analysis Motion vectors Index. décimale : 621.382 Dispositifs électroniques utilisant les effets des corps solides. Dispositifs semi-conducteurs Résumé : Recent developments in the video coding technology brought new possibilities of utilising inherently embedded features of the encoded bit-stream in applications such as video adaptation and analysis.
Due to the proliferation of surveillance videos there is a strong demand for highly efficient and reliable algorithms for object tracking.
This paper presents a new approach for the fast compressed domain analysis utilising motion data from the encoded bit-streams in order to achieve low-processing complexity of object tracking in the surveillance videos.
The algorithm estimates the trajectory of video objects by using compressed domain motion vectors extracted directly from standard H.264/MPEG-4 Advanced Video Coding (AVC) and Scalable Video Coding (SVC) bit-streams.
The experimental results show comparable tracking precision when evaluated against the standard algorithms in uncompressed domain, while maintaining low computational complexity and fast processing time, thus making the algorithm suitable for real time and streaming applications where good estimates of object trajectories have to be computed fast.DEWEY : 361.382 ISSN : 0923-5965 En ligne : http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235640%23 [...]