[article]
Titre : |
Strain transfer coefficient analyses for embedded fiber bragg grating sensors in different host materials |
Type de document : |
texte imprimé |
Auteurs : |
Li, Hong-Nan, Auteur ; Zhou, Guang-Dong, Auteur ; Ren, Liang, Auteur |
Article en page(s) : |
pp. 1343-1353 |
Note générale : |
Mécanique appliquée |
Langues : |
Anglais (eng) |
Mots-clés : |
Strain distribution Probe instruments Experimentation Young's modulus Parameters. |
Résumé : |
Fiber Bragg grating (FBG) sensors have attracted a considerable amount of interest for their superior characteristics. However, the FBG sensors made on bare fibers are easily damaged. For their safe use in engineering, the glass core of optical fibers is coated with softer low modulus protective coatings. A portion of the host material strain is absorbed by the protective coatings when the strain transfers from the host material to the fiber core, and hence only a segment of structural strain is sensed. By introducing the shear modulus of the host material, a novel analytical model is developed for evaluating the sensing strain of the embedded FBG sensors in composite structures based on the strain in a host material. The average strain transfer ratio is deduced to describe the percentage transferred to the optical fiber core from the host material. It is concluded that the shear modulus of the host material influences strain transmission, especially when it is much lower than the modulus of the fiber core. Then, the strain transfer ratio of an optical fiber sensor embedded in a multilayered structure is developed in a similar way. The factors that affect the efficiency of strain transfer on the optical fiber sensor are deduced and discussed in detail based on the theoretical analysis. Finally, the theoretical results are verified through laboratory experimentation with the FBG sensors. |
DEWEY : |
620.1 |
ISSN : |
0733-9399 |
En ligne : |
http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JENMDT&smode=strres [...] |
in Journal of engineering mechanics > Vol. 135 N° 12 (Décembre 2009) . - pp. 1343-1353
[article] Strain transfer coefficient analyses for embedded fiber bragg grating sensors in different host materials [texte imprimé] / Li, Hong-Nan, Auteur ; Zhou, Guang-Dong, Auteur ; Ren, Liang, Auteur . - pp. 1343-1353. Mécanique appliquée Langues : Anglais ( eng) in Journal of engineering mechanics > Vol. 135 N° 12 (Décembre 2009) . - pp. 1343-1353
Mots-clés : |
Strain distribution Probe instruments Experimentation Young's modulus Parameters. |
Résumé : |
Fiber Bragg grating (FBG) sensors have attracted a considerable amount of interest for their superior characteristics. However, the FBG sensors made on bare fibers are easily damaged. For their safe use in engineering, the glass core of optical fibers is coated with softer low modulus protective coatings. A portion of the host material strain is absorbed by the protective coatings when the strain transfers from the host material to the fiber core, and hence only a segment of structural strain is sensed. By introducing the shear modulus of the host material, a novel analytical model is developed for evaluating the sensing strain of the embedded FBG sensors in composite structures based on the strain in a host material. The average strain transfer ratio is deduced to describe the percentage transferred to the optical fiber core from the host material. It is concluded that the shear modulus of the host material influences strain transmission, especially when it is much lower than the modulus of the fiber core. Then, the strain transfer ratio of an optical fiber sensor embedded in a multilayered structure is developed in a similar way. The factors that affect the efficiency of strain transfer on the optical fiber sensor are deduced and discussed in detail based on the theoretical analysis. Finally, the theoretical results are verified through laboratory experimentation with the FBG sensors. |
DEWEY : |
620.1 |
ISSN : |
0733-9399 |
En ligne : |
http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JENMDT&smode=strres [...] |
|