Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Gungor, Vehbi C.
Documents disponibles écrits par cet auteur
Affiner la rechercheIndustrial wireless sensor networks: challenges, design principles, and technical approaches / Gungor, Vehbi C. in IEEE transactions on industrial electronics, Vol. 56 N° 10 (Octobre 2009)
[article]
in IEEE transactions on industrial electronics > Vol. 56 N° 10 (Octobre 2009) . - pp. 4258 - 4265
Titre : Industrial wireless sensor networks: challenges, design principles, and technical approaches Type de document : texte imprimé Auteurs : Gungor, Vehbi C., Auteur ; Hancke, Gerhard P., Auteur Article en page(s) : pp. 4258 - 4265 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Cross-layer design Industrial wireless sensor networks (IWSNs) ISA 100 Ultrawideband (UWB) Wireless HART ZigBee 6LoWPAN Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : In today's competitive industry marketplace, the companies face growing demands to improve process efficiencies, comply with environmental regulations, and meet corporate financial objectives. Given the increasing age of many industrial systems and the dynamic industrial manufacturing market, intelligent and low-cost industrial automation systems are required to improve the productivity and efficiency of such systems. The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent-processing capability. In this regard, IWSN plays a vital role in creating a highly reliable and self-healing industrial system that rapidly responds to real-time events with appropriate actions. In this paper, first, technical challenges and design principles are introduced in terms of hardware development, system architectures and protocols, and software development. Specifically, radio technologies, energy-harvesting techniques, and cross-layer design for IWSNs have been discussed. In addition, IWSN standards are presented for the system owners, who plan to utilize new IWSN technologies for industrial automation applications. In this paper, our aim is to provide a contemporary look at the current state of the art in IWSNs and discuss the still-open research issues in this field and, hence, to make the decision-making process more effective and direct. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4796311 [article] Industrial wireless sensor networks: challenges, design principles, and technical approaches [texte imprimé] / Gungor, Vehbi C., Auteur ; Hancke, Gerhard P., Auteur . - pp. 4258 - 4265.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 56 N° 10 (Octobre 2009) . - pp. 4258 - 4265
Mots-clés : Cross-layer design Industrial wireless sensor networks (IWSNs) ISA 100 Ultrawideband (UWB) Wireless HART ZigBee 6LoWPAN Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : In today's competitive industry marketplace, the companies face growing demands to improve process efficiencies, comply with environmental regulations, and meet corporate financial objectives. Given the increasing age of many industrial systems and the dynamic industrial manufacturing market, intelligent and low-cost industrial automation systems are required to improve the productivity and efficiency of such systems. The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent-processing capability. In this regard, IWSN plays a vital role in creating a highly reliable and self-healing industrial system that rapidly responds to real-time events with appropriate actions. In this paper, first, technical challenges and design principles are introduced in terms of hardware development, system architectures and protocols, and software development. Specifically, radio technologies, energy-harvesting techniques, and cross-layer design for IWSNs have been discussed. In addition, IWSN standards are presented for the system owners, who plan to utilize new IWSN technologies for industrial automation applications. In this paper, our aim is to provide a contemporary look at the current state of the art in IWSNs and discuss the still-open research issues in this field and, hence, to make the decision-making process more effective and direct. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4796311 Online and remote motor energy monitoring and fault diagnostics using wireless sensor networks / Bin Lu in IEEE transactions on industrial electronics, Vol. 56 N° 11 (Novembre 2009)
[article]
in IEEE transactions on industrial electronics > Vol. 56 N° 11 (Novembre 2009) . - pp. 4651 - 4659
Titre : Online and remote motor energy monitoring and fault diagnostics using wireless sensor networks Type de document : texte imprimé Auteurs : Bin Lu, Auteur ; Gungor, Vehbi C., Auteur Article en page(s) : pp. 4651 - 4659 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Energy efficiency Fault diagnostics IEEE 202.15.4 Link-quality indicator (LQI) Motor current signature analysis (MCSA) Motor power signature analysis (MPSA) Remote monitoring Wireless sensor networks (WSNs) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper identifies the synergies between wireless sensor networks (WSNs) and nonintrusive electrical-signal-based motor signature analysis and proposes a scheme of applying WSNs in online and remote energy monitoring and fault diagnostics for industrial motor systems. The main scope is to provide a system overview where the nonintrusive nature of the electrical-signal-based motor signature analysis enables its applications in a WSN architecture. Special considerations in designing nonintrusive motor energy monitoring and fault diagnostic methods in such systems are discussed. This paper also provides detailed analyses to address the real-world challenges in designing and deploying WSNs in practice, including wireless-link-quality dynamics, noise and interference, and environmental impact on communication range and reliability. The overall system feasibility is investigated through a series of laboratory experiments and field tests. First, the concept of a remote and online energy monitoring and fault diagnostic system is demonstrated using a simplified star-type IEEE 802.15.4 compliant WSN in the laboratory. Two well-established nonintrusive motor diagnostic algorithms are intentionally used to prove the feasibility. Next, the challenges of applying the proposed WSN scheme in real industrial environments are analyzed experimentally using field test results. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5191094 [article] Online and remote motor energy monitoring and fault diagnostics using wireless sensor networks [texte imprimé] / Bin Lu, Auteur ; Gungor, Vehbi C., Auteur . - pp. 4651 - 4659.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 56 N° 11 (Novembre 2009) . - pp. 4651 - 4659
Mots-clés : Energy efficiency Fault diagnostics IEEE 202.15.4 Link-quality indicator (LQI) Motor current signature analysis (MCSA) Motor power signature analysis (MPSA) Remote monitoring Wireless sensor networks (WSNs) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper identifies the synergies between wireless sensor networks (WSNs) and nonintrusive electrical-signal-based motor signature analysis and proposes a scheme of applying WSNs in online and remote energy monitoring and fault diagnostics for industrial motor systems. The main scope is to provide a system overview where the nonintrusive nature of the electrical-signal-based motor signature analysis enables its applications in a WSN architecture. Special considerations in designing nonintrusive motor energy monitoring and fault diagnostic methods in such systems are discussed. This paper also provides detailed analyses to address the real-world challenges in designing and deploying WSNs in practice, including wireless-link-quality dynamics, noise and interference, and environmental impact on communication range and reliability. The overall system feasibility is investigated through a series of laboratory experiments and field tests. First, the concept of a remote and online energy monitoring and fault diagnostic system is demonstrated using a simplified star-type IEEE 802.15.4 compliant WSN in the laboratory. Two well-established nonintrusive motor diagnostic algorithms are intentionally used to prove the feasibility. Next, the challenges of applying the proposed WSN scheme in real industrial environments are analyzed experimentally using field test results. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5191094 Opportunities and challenges of wireless sensor networks in smart grid / Gungor, Vehbi C. in IEEE transactions on industrial electronics, Vol. 57 N° 10 (Octobre 2010)
[article]
in IEEE transactions on industrial electronics > Vol. 57 N° 10 (Octobre 2010) . - pp. 3557 - 3564
Titre : Opportunities and challenges of wireless sensor networks in smart grid Type de document : texte imprimé Auteurs : Gungor, Vehbi C., Auteur ; Bin Lu, Auteur ; Hancke, Gerhard P., Auteur Année de publication : 2011 Article en page(s) : pp. 3557 - 3564 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : CC2420, Diagnostics, IEEE 802.15.4, Link-quality indicator (LQI) Monitoring Received signal strength indicator (RSSI) Smart grid Wireless sensor networks (WSNs) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : The collaborative and low-cost nature of wireless sensor networks (WSNs) brings significant advantages over traditional communication technologies used in today's electric power systems. Recently, WSNs have been widely recognized as a promising technology that can enhance various aspects of today's electric power systems, including generation, delivery, and utilization, making them a vital component of the next-generation electric power system, the smart grid. However, harsh and complex electric-power-system environments pose great challenges in the reliability of WSN communications in smart-grid applications. This paper starts with an overview of the application of WSNs for electric power systems along with their opportunities and challenges and opens up future work in many unexploited research areas in diverse smart-grid applications. Then, it presents a comprehensive experimental study on the statistical characterization of the wireless channel in different electric-power-system environments, including a 500-kV substation, an industrial power control room, and an underground network transformer vault. Field tests have been performed on IEEE 802.15.4-compliant wireless sensor nodes in real-world power delivery and distribution systems to measure background noise, channel characteristics, and attenuation in the 2.4-GHz frequency band. Overall, the empirical measurements and experimental results provide valuable insights about IEEE 802.15.4-compliant sensor network platforms and guide design decisions and tradeoffs for WSN-based smart-grid applications. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5406152 [article] Opportunities and challenges of wireless sensor networks in smart grid [texte imprimé] / Gungor, Vehbi C., Auteur ; Bin Lu, Auteur ; Hancke, Gerhard P., Auteur . - 2011 . - pp. 3557 - 3564.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 57 N° 10 (Octobre 2010) . - pp. 3557 - 3564
Mots-clés : CC2420, Diagnostics, IEEE 802.15.4, Link-quality indicator (LQI) Monitoring Received signal strength indicator (RSSI) Smart grid Wireless sensor networks (WSNs) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : The collaborative and low-cost nature of wireless sensor networks (WSNs) brings significant advantages over traditional communication technologies used in today's electric power systems. Recently, WSNs have been widely recognized as a promising technology that can enhance various aspects of today's electric power systems, including generation, delivery, and utilization, making them a vital component of the next-generation electric power system, the smart grid. However, harsh and complex electric-power-system environments pose great challenges in the reliability of WSN communications in smart-grid applications. This paper starts with an overview of the application of WSNs for electric power systems along with their opportunities and challenges and opens up future work in many unexploited research areas in diverse smart-grid applications. Then, it presents a comprehensive experimental study on the statistical characterization of the wireless channel in different electric-power-system environments, including a 500-kV substation, an industrial power control room, and an underground network transformer vault. Field tests have been performed on IEEE 802.15.4-compliant wireless sensor nodes in real-world power delivery and distribution systems to measure background noise, channel characteristics, and attenuation in the 2.4-GHz frequency band. Overall, the empirical measurements and experimental results provide valuable insights about IEEE 802.15.4-compliant sensor network platforms and guide design decisions and tradeoffs for WSN-based smart-grid applications. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5406152