Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Giaccone, Santiago J.
Documents disponibles écrits par cet auteur
Affiner la rechercheOnline model-based stator-fault detection and identification in induction motors / De Angelo, Cristian H. in IEEE transactions on industrial electronics, Vol. 56 N° 11 (Novembre 2009)
[article]
in IEEE transactions on industrial electronics > Vol. 56 N° 11 (Novembre 2009) . - pp. 4671 - 4680
Titre : Online model-based stator-fault detection and identification in induction motors Type de document : texte imprimé Auteurs : De Angelo, Cristian H., Auteur ; Bossio, Guillermo R., Auteur ; Giaccone, Santiago J., Auteur Article en page(s) : pp. 4671 - 4680 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Detection Identification Induction motors (IMs) Model based observer Short circuit Stator faults Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : In this paper, a model-based strategy for stator-interturn short-circuit detection on induction motors is presented. The proposed strategy is based on the generation of a vector of specific residual using a state observer. The vectorial residual is generated from a decomposition of the current estimation error. This allows for a fast detection of incipient faults, independently of the phase in which the fault occurs. Since the observer includes an adaptive scheme for rotor-speed estimation, the proposed scheme can be implemented for online monitoring, by measuring only stator voltages and currents. It is shown that the proposed strategy presents very low sensitivity to load variations and power-supply perturbations. Experimental results are included to show the ability of the proposed strategy for detecting incipient faults, including a low number of short-circuited turns and low fault current. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4752772 [article] Online model-based stator-fault detection and identification in induction motors [texte imprimé] / De Angelo, Cristian H., Auteur ; Bossio, Guillermo R., Auteur ; Giaccone, Santiago J., Auteur . - pp. 4671 - 4680.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 56 N° 11 (Novembre 2009) . - pp. 4671 - 4680
Mots-clés : Detection Identification Induction motors (IMs) Model based observer Short circuit Stator faults Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : In this paper, a model-based strategy for stator-interturn short-circuit detection on induction motors is presented. The proposed strategy is based on the generation of a vector of specific residual using a state observer. The vectorial residual is generated from a decomposition of the current estimation error. This allows for a fast detection of incipient faults, independently of the phase in which the fault occurs. Since the observer includes an adaptive scheme for rotor-speed estimation, the proposed scheme can be implemented for online monitoring, by measuring only stator voltages and currents. It is shown that the proposed strategy presents very low sensitivity to load variations and power-supply perturbations. Experimental results are included to show the ability of the proposed strategy for detecting incipient faults, including a low number of short-circuited turns and low fault current. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4752772