Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Denaï, Mouloud
Documents disponibles écrits par cet auteur
Affiner la rechercheOptimal control design for robust fuzzy friction compensation in a robot joint / Mostefai, Lotfi in IEEE transactions on industrial electronics, Vol. 56 N° 10 (Octobre 2009)
[article]
in IEEE transactions on industrial electronics > Vol. 56 N° 10 (Octobre 2009) . - pp. 3832 - 3839
Titre : Optimal control design for robust fuzzy friction compensation in a robot joint Type de document : texte imprimé Auteurs : Mostefai, Lotfi, Auteur ; Denaï, Mouloud, Auteur ; Sehoon, Oh, Auteur Article en page(s) : pp. 3832 - 3839 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Friction compensation Fuzzy modeling Fuzzy observers Linear matrix inequality (LMI) Optimal H∞ control Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper presents a methodology for the compensation of nonlinear friction in a robot joint structure based on a fuzzy local modeling technique. To enhance the tracking performance of the robot joint, a dynamic model is derived from the local physical properties of friction. The model is the basis of a precompensator taking into account the dynamics of the overall corrected system by means of a minor loop. The proposed structure does not claim to faithfully reproduce complex phenomena driven by friction. However, the linearity of the local models simplifies the design and implementation of the observer, and its estimation capabilities are improved by the nonlinear integral gain. The controller can then be robustly synthesized using linear matrix inequalities to cancel the effects of inexact friction compensation. Experimental tests conducted on a robot joint with a high level of friction demonstrate the effectiveness of the proposed fuzzy observer-based control strategy for tracking system trajectories when operating in zero-velocity regions and during motion reversals. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5067326 [article] Optimal control design for robust fuzzy friction compensation in a robot joint [texte imprimé] / Mostefai, Lotfi, Auteur ; Denaï, Mouloud, Auteur ; Sehoon, Oh, Auteur . - pp. 3832 - 3839.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 56 N° 10 (Octobre 2009) . - pp. 3832 - 3839
Mots-clés : Friction compensation Fuzzy modeling Fuzzy observers Linear matrix inequality (LMI) Optimal H∞ control Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper presents a methodology for the compensation of nonlinear friction in a robot joint structure based on a fuzzy local modeling technique. To enhance the tracking performance of the robot joint, a dynamic model is derived from the local physical properties of friction. The model is the basis of a precompensator taking into account the dynamics of the overall corrected system by means of a minor loop. The proposed structure does not claim to faithfully reproduce complex phenomena driven by friction. However, the linearity of the local models simplifies the design and implementation of the observer, and its estimation capabilities are improved by the nonlinear integral gain. The controller can then be robustly synthesized using linear matrix inequalities to cancel the effects of inexact friction compensation. Experimental tests conducted on a robot joint with a high level of friction demonstrate the effectiveness of the proposed fuzzy observer-based control strategy for tracking system trajectories when operating in zero-velocity regions and during motion reversals. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5067326