[article]
Titre : |
Conditional Monte Carlo estimation of quantile sensitives |
Type de document : |
texte imprimé |
Auteurs : |
Michael C. Fu, Auteur ; L. Jeff Hong, Auteur ; Jian-Qiang Hu, Auteur |
Article en page(s) : |
pp. 2019-2027 |
Note générale : |
Gestion |
Langues : |
Anglais (eng) |
Mots-clés : |
Quantiles Value at risk Credit Monte Carlo simulation Gradient estimation |
Index. décimale : |
658 Organisation des entreprises. Techniques du commerce |
Résumé : |
Estimating quantile sensitivites is important in many optimizations, from hedging in financial engineering to service-level constraints in inventory control to more general chance constraints in stochastic programming.
Recently, Hong (Hong, L. J. 2009. Estimating Quantile sensitivities. Oper. Res. 57 118-130) derived a batched infinitesimal perturbation analysis estimator for quantile sensitivities, and Liu and Hong (Liu, G., L. J. Hong. 2009. Kernel estimation of quantile sensitivities. Naval Res. Logist. 56 511-525) derived a kernel estimator.
Both of these estimators are consistent with convergence rates bounded by n-1/3 and n-2/5 , respectively.
In this paper, we use conditional Monte Carlo to derive a consistent quantile sensitivity estimator that improves upon these convergence rates and requires no batching or binning.
We illustrate the new estimator using a simple but realistic portfolio credit risk example, for which the previous work is inapplicable. |
DEWEY : |
658 |
ISSN : |
0025-1909 |
in Management science > Vol. 55 N° 12 (Décembre 2009) . - pp. 2019-2027
[article] Conditional Monte Carlo estimation of quantile sensitives [texte imprimé] / Michael C. Fu, Auteur ; L. Jeff Hong, Auteur ; Jian-Qiang Hu, Auteur . - pp. 2019-2027. Gestion Langues : Anglais ( eng) in Management science > Vol. 55 N° 12 (Décembre 2009) . - pp. 2019-2027
Mots-clés : |
Quantiles Value at risk Credit Monte Carlo simulation Gradient estimation |
Index. décimale : |
658 Organisation des entreprises. Techniques du commerce |
Résumé : |
Estimating quantile sensitivites is important in many optimizations, from hedging in financial engineering to service-level constraints in inventory control to more general chance constraints in stochastic programming.
Recently, Hong (Hong, L. J. 2009. Estimating Quantile sensitivities. Oper. Res. 57 118-130) derived a batched infinitesimal perturbation analysis estimator for quantile sensitivities, and Liu and Hong (Liu, G., L. J. Hong. 2009. Kernel estimation of quantile sensitivities. Naval Res. Logist. 56 511-525) derived a kernel estimator.
Both of these estimators are consistent with convergence rates bounded by n-1/3 and n-2/5 , respectively.
In this paper, we use conditional Monte Carlo to derive a consistent quantile sensitivity estimator that improves upon these convergence rates and requires no batching or binning.
We illustrate the new estimator using a simple but realistic portfolio credit risk example, for which the previous work is inapplicable. |
DEWEY : |
658 |
ISSN : |
0025-1909 |
|