Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Gordon A. Fenton
Documents disponibles écrits par cet auteur
Affiner la rechercheInfluence of spatial variability on slope reliability using 2-D random fields / D. V. Griffiths in Journal of geotechnical and geoenvironmental engineering, Vol. 135 N° 10 (Octobre 2009)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 135 N° 10 (Octobre 2009) . - pp. 1367–1378
Titre : Influence of spatial variability on slope reliability using 2-D random fields Type de document : texte imprimé Auteurs : D. V. Griffiths, Auteur ; Jinsong Huang, Auteur ; Gordon A. Fenton, Auteur Année de publication : 2009 Article en page(s) : pp. 1367–1378 Note générale : Geotechnical and geoenvironmental engineering Langues : Anglais (eng) Mots-clés : Slope stabilityFinite element methodProbabilityFailures Résumé : The paper investigates the probability of failure of slopes using both traditional and more advanced probabilistic analysis tools. The advanced method, called the random finite-element method, uses elastoplasticity in a finite-element model combined with random field theory in a Monte-Carlo framework. The traditional method, called the first-order reliability method, computes a reliability index which is the shortest distance (in units of directional equivalent standard deviations) from the equivalent mean-value point to the limit state surface and estimates the probability of failure from the reliability index. Numerical results show that simplified probabilistic analyses in which spatial variability of soil properties is not properly accounted for, can lead to unconservative estimates of the probability of failure if the coefficient of variation of the shear strength parameters exceeds a critical value. The influences of slope inclination, factor of safety (based on mean strength values), and cross correlation between strength parameters on this critical value have been investigated by parametric studies in this paper. The results indicate when probabilistic approaches, which do not model spatial variation, may lead to unconservative estimates of slope failure probability and when more advanced probabilistic methods are warranted. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000099 [article] Influence of spatial variability on slope reliability using 2-D random fields [texte imprimé] / D. V. Griffiths, Auteur ; Jinsong Huang, Auteur ; Gordon A. Fenton, Auteur . - 2009 . - pp. 1367–1378.
Geotechnical and geoenvironmental engineering
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 135 N° 10 (Octobre 2009) . - pp. 1367–1378
Mots-clés : Slope stabilityFinite element methodProbabilityFailures Résumé : The paper investigates the probability of failure of slopes using both traditional and more advanced probabilistic analysis tools. The advanced method, called the random finite-element method, uses elastoplasticity in a finite-element model combined with random field theory in a Monte-Carlo framework. The traditional method, called the first-order reliability method, computes a reliability index which is the shortest distance (in units of directional equivalent standard deviations) from the equivalent mean-value point to the limit state surface and estimates the probability of failure from the reliability index. Numerical results show that simplified probabilistic analyses in which spatial variability of soil properties is not properly accounted for, can lead to unconservative estimates of the probability of failure if the coefficient of variation of the shear strength parameters exceeds a critical value. The influences of slope inclination, factor of safety (based on mean strength values), and cross correlation between strength parameters on this critical value have been investigated by parametric studies in this paper. The results indicate when probabilistic approaches, which do not model spatial variation, may lead to unconservative estimates of slope failure probability and when more advanced probabilistic methods are warranted. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000099 Probabilistic analysis of coupled soil consolidation / Jinsong Huang in Journal of geotechnical and geoenvironmental engineering, Vol. 136 N° 3 (Mars 2010)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 136 N° 3 (Mars 2010) . - pp. 417-430
Titre : Probabilistic analysis of coupled soil consolidation Type de document : texte imprimé Auteurs : Jinsong Huang, Auteur ; D. V. Griffiths, Auteur ; Gordon A. Fenton, Auteur Article en page(s) : pp. 417-430 Note générale : Géotechnique Langues : Anglais (eng) Mots-clés : Finite-element method Soil consolidation Probabilistic methods Coupling Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : Coupled Biot consolidation theory was combined with the random finite-element method to investigate the consolidation behavior of soil deposits with spatially variable properties in one-dimensional (1D) and two-dimensional (2D) spaces. The coefficient of volume compressibility (mv) and the soil permeability (k) are assumed to be lognormally distributed random variables. The random fields of mv and k are generated by the local average subdivision method which fully takes account of spatial correlation, local averaging, and cross correlations. The generated random variables are mapped onto a finite-element mesh and Monte Carlo finite-element simulations follow. The results of parametric studies are presented, which describe the effect of the standard deviation, spatial correlation length, and cross correlation coefficient on output statistics relating to the overall “equivalent” coefficient of consolidation. It is shown that the average degree of consolidation defined by excess pore pressure and settlement are different in heterogeneous soils. The dimensional effect on the soil consolidation behaviors is also investigated by comparing the 1D and 2D results.
DEWEY : 624.1 ISSN : 1090-0241 En ligne : http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JGGEFK&smode=strres [...] [article] Probabilistic analysis of coupled soil consolidation [texte imprimé] / Jinsong Huang, Auteur ; D. V. Griffiths, Auteur ; Gordon A. Fenton, Auteur . - pp. 417-430.
Géotechnique
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 136 N° 3 (Mars 2010) . - pp. 417-430
Mots-clés : Finite-element method Soil consolidation Probabilistic methods Coupling Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : Coupled Biot consolidation theory was combined with the random finite-element method to investigate the consolidation behavior of soil deposits with spatially variable properties in one-dimensional (1D) and two-dimensional (2D) spaces. The coefficient of volume compressibility (mv) and the soil permeability (k) are assumed to be lognormally distributed random variables. The random fields of mv and k are generated by the local average subdivision method which fully takes account of spatial correlation, local averaging, and cross correlations. The generated random variables are mapped onto a finite-element mesh and Monte Carlo finite-element simulations follow. The results of parametric studies are presented, which describe the effect of the standard deviation, spatial correlation length, and cross correlation coefficient on output statistics relating to the overall “equivalent” coefficient of consolidation. It is shown that the average degree of consolidation defined by excess pore pressure and settlement are different in heterogeneous soils. The dimensional effect on the soil consolidation behaviors is also investigated by comparing the 1D and 2D results.
DEWEY : 624.1 ISSN : 1090-0241 En ligne : http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JGGEFK&smode=strres [...] Probabilistic settlement analysis by stochastic and random finite-element methods / D. V. Griffiths in Journal of geotechnical and geoenvironmental engineering, Vol. 135 N° 11 (Novembre 2009)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 135 N° 11 (Novembre 2009) . - pp. 1629–1637
Titre : Probabilistic settlement analysis by stochastic and random finite-element methods Type de document : texte imprimé Auteurs : D. V. Griffiths, Auteur ; Gordon A. Fenton, Auteur Année de publication : 2009 Article en page(s) : pp. 1629–1637 Note générale : Geotechnical and geoenvironmental engineering Langues : Anglais (eng) Mots-clés : Foundation settlementElasticityProbabilityFinite element methodStochastic processes Résumé : The paper discusses finite element models for predicting the elastic settlement of a strip footing on a variable soil. The paper then goes on to compare results obtained in a probabilistic settlement analysis using a stochastic finite element method based on first order second moment approximations, with the random finite element method based on generation of random fields combined with Monte Carlo simulations. The paper highlights the deficiencies of probabilistic methods that are unable to properly account for spatial correlation. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000126 [article] Probabilistic settlement analysis by stochastic and random finite-element methods [texte imprimé] / D. V. Griffiths, Auteur ; Gordon A. Fenton, Auteur . - 2009 . - pp. 1629–1637.
Geotechnical and geoenvironmental engineering
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 135 N° 11 (Novembre 2009) . - pp. 1629–1637
Mots-clés : Foundation settlementElasticityProbabilityFinite element methodStochastic processes Résumé : The paper discusses finite element models for predicting the elastic settlement of a strip footing on a variable soil. The paper then goes on to compare results obtained in a probabilistic settlement analysis using a stochastic finite element method based on first order second moment approximations, with the random finite element method based on generation of random fields combined with Monte Carlo simulations. The paper highlights the deficiencies of probabilistic methods that are unable to properly account for spatial correlation. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000126