Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Dar Hao Chen
Documents disponibles écrits par cet auteur
Affiner la rechercheInspection and condition assessment using ground penetrating radar / Dar Hao Chen in Journal of geotechnical and geoenvironmental engineering, Vol. 136 N° 1 (Janvier 2010)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 136 N° 1 (Janvier 2010) . - pp. 207-214
Titre : Inspection and condition assessment using ground penetrating radar Type de document : texte imprimé Auteurs : Dar Hao Chen, Auteur ; Andrew Wimsatt, Auteur Article en page(s) : pp. 207-214 Note générale : Géotechnique Langues : Anglais (eng) Mots-clés : Void Ground penetrating radar Nondestructive testing Anomaly Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : The nondestructive mapping of anomalies and voids under roadway pavements is critical to highway authorities because of the potential loss of support that would lead to safety hazards. 400 MHz ground-coupled penetrating radar (GCPR) was used in this study to characterize the subsurface conditions of three roadway pavements (SH359, IH40, and U.S. 290). The extents of the anomalies in horizontal and vertical directions were visible in GCPR images. Coring, boring, and lab testing were performed to verify the settlement and source of the moisture on SH359. The source of the moisture was from the leaking water pipe, as indicated by the high chloride and chlorite contents. A 1.8-m deep void (3.8 m3 in volume) under IH40 and a 1.8 m×4.6 m×3.7 m (30.6 m3 in volume) void under U.S. 290's reinforced concrete pavements were successfully identified by GCPR and verified by field boring and coring. Fortunately, the voids near the drainpipes were detected by GCPR in time. Otherwise, the void would have increased in size, and that could have led to a severe hazard. This study has successfully demonstrated that the GCPR is able to identify anomalies and voids. Therefore, engineers can utilize the information from GCPR to undertake remedial actions with confidence.
DEWEY : 624.1 ISSN : 1090-0241 En ligne : http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JGGEFK&ONLINE=YES&s [...] [article] Inspection and condition assessment using ground penetrating radar [texte imprimé] / Dar Hao Chen, Auteur ; Andrew Wimsatt, Auteur . - pp. 207-214.
Géotechnique
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 136 N° 1 (Janvier 2010) . - pp. 207-214
Mots-clés : Void Ground penetrating radar Nondestructive testing Anomaly Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : The nondestructive mapping of anomalies and voids under roadway pavements is critical to highway authorities because of the potential loss of support that would lead to safety hazards. 400 MHz ground-coupled penetrating radar (GCPR) was used in this study to characterize the subsurface conditions of three roadway pavements (SH359, IH40, and U.S. 290). The extents of the anomalies in horizontal and vertical directions were visible in GCPR images. Coring, boring, and lab testing were performed to verify the settlement and source of the moisture on SH359. The source of the moisture was from the leaking water pipe, as indicated by the high chloride and chlorite contents. A 1.8-m deep void (3.8 m3 in volume) under IH40 and a 1.8 m×4.6 m×3.7 m (30.6 m3 in volume) void under U.S. 290's reinforced concrete pavements were successfully identified by GCPR and verified by field boring and coring. Fortunately, the voids near the drainpipes were detected by GCPR in time. Otherwise, the void would have increased in size, and that could have led to a severe hazard. This study has successfully demonstrated that the GCPR is able to identify anomalies and voids. Therefore, engineers can utilize the information from GCPR to undertake remedial actions with confidence.
DEWEY : 624.1 ISSN : 1090-0241 En ligne : http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JGGEFK&ONLINE=YES&s [...]