Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Meeuwse, Marco
Documents disponibles écrits par cet auteur
Affiner la rechercheLiquid — solid mass transfer and reaction in a rotor — stator spinning disc reactor / Meeuwse, Marco in Industrial & engineering chemistry research, Vol. 49 N° 21 (Novembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp. 10751-10757
Titre : Liquid — solid mass transfer and reaction in a rotor — stator spinning disc reactor Type de document : texte imprimé Auteurs : Meeuwse, Marco, Auteur ; Sanne Lempers, Auteur ; John Van Der Schaaf, Auteur Année de publication : 2011 Article en page(s) : pp. 10751-10757 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Reactor Stator Rotor Mass transfer Résumé : The heterogeneously catalyzed oxidation of glucose is performed in a rotor-stator spinning disk reactor. One side of the rotor is coated with a Pt/C and Nafion catalytic layer, resulting in a liquid-solid interfacial area of 274 mi2 mR3. At the lowest rotational disk speed, 26 rad s―1, the reaction is liquid-solid mass transfer limited; at the highest rotational disk speed, 180 rad s―1, the intrinsic kinetics are rate determining. The experimental overall reaction rates are fitted with a resistances in series model, with the activation energy, pre-exponential factor, and volumetric liquid-solid mass transfer coefficient as parameters. The volumetric liquid―solid mass transfer coefficient, kLSαLS, increases from 0.02 to 0.22 mL3 mR―3 s―1 for a rotational disk speed of 26 to 157 rad s '. These values are high in comparison to conventional reactors, like packed beds, in spite of the low liquid-solid interfacial area used in this study. The values of the liquid—solid mass transfer coefficient kLS are 1 order of magnitude higher compared to values reported for packed beds. The Sherwood number for the liquid-solid mass transfer in the rotor―stator spinning disk reactor depends on the Reynolds number to the power 2 in the range I x 105 < Re < 7 x 105. In this range, the transition of laminar flow to turbulent flow takes place, resulting in a change of the mass transfer mechanism. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=23447968 [article] Liquid — solid mass transfer and reaction in a rotor — stator spinning disc reactor [texte imprimé] / Meeuwse, Marco, Auteur ; Sanne Lempers, Auteur ; John Van Der Schaaf, Auteur . - 2011 . - pp. 10751-10757.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp. 10751-10757
Mots-clés : Reactor Stator Rotor Mass transfer Résumé : The heterogeneously catalyzed oxidation of glucose is performed in a rotor-stator spinning disk reactor. One side of the rotor is coated with a Pt/C and Nafion catalytic layer, resulting in a liquid-solid interfacial area of 274 mi2 mR3. At the lowest rotational disk speed, 26 rad s―1, the reaction is liquid-solid mass transfer limited; at the highest rotational disk speed, 180 rad s―1, the intrinsic kinetics are rate determining. The experimental overall reaction rates are fitted with a resistances in series model, with the activation energy, pre-exponential factor, and volumetric liquid-solid mass transfer coefficient as parameters. The volumetric liquid―solid mass transfer coefficient, kLSαLS, increases from 0.02 to 0.22 mL3 mR―3 s―1 for a rotational disk speed of 26 to 157 rad s '. These values are high in comparison to conventional reactors, like packed beds, in spite of the low liquid-solid interfacial area used in this study. The values of the liquid—solid mass transfer coefficient kLS are 1 order of magnitude higher compared to values reported for packed beds. The Sherwood number for the liquid-solid mass transfer in the rotor―stator spinning disk reactor depends on the Reynolds number to the power 2 in the range I x 105 < Re < 7 x 105. In this range, the transition of laminar flow to turbulent flow takes place, resulting in a change of the mass transfer mechanism. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=23447968 Mass transfer in a rotor−stator spinning disk reactor with cofeeding of gas and liquid / Meeuwse, Marco in Industrial & engineering chemistry research, Vol. 49 N° 4 (Fevrier 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 4 (Fevrier 2010) . - pp 1605–1610
Titre : Mass transfer in a rotor−stator spinning disk reactor with cofeeding of gas and liquid Type de document : texte imprimé Auteurs : Meeuwse, Marco, Auteur ; John Van Der Schaaf, Auteur ; Schouten, Jaap C., Auteur Année de publication : 2010 Article en page(s) : pp 1605–1610 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Mass transfer Gas liquid. Résumé : This paper presents a new type of spinning disk reactor configuration for gas−liquid operations. It combines the features of a classical spinning disk with a liquid film on the rotor [e.g., Aoune, A.; Ramshaw, C. Int. J. Heat Mass Transfer 1999, 42, 2543−2556] and those of a rotor−stator spinning disk unit with a single gas inlet in the bottom stator [Meeuwse, M.; van der Schaaf, J.; Kuster, B. F. M.; Schouten, J. C. Chem. Eng. Sci. 2010, 65 (1), 466−471]. In this new configuration, gas and liquid are cofed through an inlet in the top stator. It is shown that gas−liquid mass transfer mainly takes place in the dispersed region between the rotor and the bottom stator. kGLaGLVR in this region is up to a factor of 6 larger than in the region with the liquid film on the rotor. Simulation of gas desorption from a saturated liquid shows that the gas−liquid mass transfer in this cofed configuration is considerably improved in comparison to the separate reactors, at similar operating conditions. The new reactor has also a higher potential for scaling up: gas and liquid can be cofed from one rotor−stator unit to another without the need for redistribution of the gas. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901301m [article] Mass transfer in a rotor−stator spinning disk reactor with cofeeding of gas and liquid [texte imprimé] / Meeuwse, Marco, Auteur ; John Van Der Schaaf, Auteur ; Schouten, Jaap C., Auteur . - 2010 . - pp 1605–1610.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 4 (Fevrier 2010) . - pp 1605–1610
Mots-clés : Mass transfer Gas liquid. Résumé : This paper presents a new type of spinning disk reactor configuration for gas−liquid operations. It combines the features of a classical spinning disk with a liquid film on the rotor [e.g., Aoune, A.; Ramshaw, C. Int. J. Heat Mass Transfer 1999, 42, 2543−2556] and those of a rotor−stator spinning disk unit with a single gas inlet in the bottom stator [Meeuwse, M.; van der Schaaf, J.; Kuster, B. F. M.; Schouten, J. C. Chem. Eng. Sci. 2010, 65 (1), 466−471]. In this new configuration, gas and liquid are cofed through an inlet in the top stator. It is shown that gas−liquid mass transfer mainly takes place in the dispersed region between the rotor and the bottom stator. kGLaGLVR in this region is up to a factor of 6 larger than in the region with the liquid film on the rotor. Simulation of gas desorption from a saturated liquid shows that the gas−liquid mass transfer in this cofed configuration is considerably improved in comparison to the separate reactors, at similar operating conditions. The new reactor has also a higher potential for scaling up: gas and liquid can be cofed from one rotor−stator unit to another without the need for redistribution of the gas. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901301m