Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yogendra Joshi
Documents disponibles écrits par cet auteur
Affiner la rechercheHeat transfer in microchannels with suspended solid particles / Reza H. Khiabani in Journal of heat transfer, Vol. 132 N° 4 (n° spécial) (Avril 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 4 (n° spécial) (Avril 2010) . - pp. [041003-1/9]
Titre : Heat transfer in microchannels with suspended solid particles : lattice-boltzmann based computations Type de document : texte imprimé Auteurs : Reza H. Khiabani, Auteur ; Yogendra Joshi, Auteur ; Cyrus K. Aidun, Auteur Article en page(s) : pp. [041003-1/9] Note générale : Physique Langues : Anglais (eng) Mots-clés : Nanofluid heat transfer Suspended particles Lattice-Boltzmann method for heat transfer Numerical simulation Index. décimale : 536 Chaleur. Thermodynamique Résumé : This paper presents computational results on the effect of fixed or suspended cylindrical solid particles on heat transfer in a channel flow. The computational method is based on the solution of the lattice-Boltzmann equation for the fluid flow, coupled with the energy equation for thermal transport and the Newtonian dynamic equations for direct simulation of suspended particle transport. The effects of Reynolds number, particle-to-channel size ratio, and the eccentricity of the particle on heat transfer from the channel walls for single and multi-particles are presented. The multi-particle flow condition represents a case with solid particles suspended in the cooling medium, such as in micro/nanofluids, to augment heat transfer. The results provide insight into the mechanism by which suspended particles can change the rate of heat transfer in a microchannel.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] Heat transfer in microchannels with suspended solid particles : lattice-boltzmann based computations [texte imprimé] / Reza H. Khiabani, Auteur ; Yogendra Joshi, Auteur ; Cyrus K. Aidun, Auteur . - pp. [041003-1/9].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 4 (n° spécial) (Avril 2010) . - pp. [041003-1/9]
Mots-clés : Nanofluid heat transfer Suspended particles Lattice-Boltzmann method for heat transfer Numerical simulation Index. décimale : 536 Chaleur. Thermodynamique Résumé : This paper presents computational results on the effect of fixed or suspended cylindrical solid particles on heat transfer in a channel flow. The computational method is based on the solution of the lattice-Boltzmann equation for the fluid flow, coupled with the energy equation for thermal transport and the Newtonian dynamic equations for direct simulation of suspended particle transport. The effects of Reynolds number, particle-to-channel size ratio, and the eccentricity of the particle on heat transfer from the channel walls for single and multi-particles are presented. The multi-particle flow condition represents a case with solid particles suspended in the cooling medium, such as in micro/nanofluids, to augment heat transfer. The results provide insight into the mechanism by which suspended particles can change the rate of heat transfer in a microchannel.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] Proper orthogonal decomposition for reduced order thermal modeling of air cooled data centers / Emad Samadiani in Journal of heat transfer, Vol. 132 N° 7 (Juillet 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 7 (Juillet 2010) . - pp. [071402 -1/14]
Titre : Proper orthogonal decomposition for reduced order thermal modeling of air cooled data centers Type de document : texte imprimé Auteurs : Emad Samadiani, Auteur ; Yogendra Joshi, Auteur Article en page(s) : pp. [071402 -1/14] Note générale : Physique Langues : Anglais (eng) Mots-clés : Paper orthogonal decomposition Reduced order thermal modeling Data center Index. décimale : 536 Chaleur. Thermodynamique Résumé : Computational fluid dynamics/heat transfer (CFD/HT) methods are too time consuming and costly to examine the effect of multiple design variables on the system thermal performance, especially for systems with multiple components and interacting physical phenomena. In this paper, a proper orthogonal decomposition (POD) based reduced order thermal modeling approach is presented for complex convective systems. The basic POD technique is used with energy balance equations, and heat flux and/or surface temperature matching to generate a computationally efficient thermal model in terms of the system design variables. The effectiveness of the presented approach is studied through application to an air-cooled data center cell with a floor area of 23.2 m2 and a total power dissipation of 240 kW, with multiple turbulent convective components and five design variables. The method results in average temperature rise prediction error of 1.24°C (4.9%) for different sets of design variables, while it is ~150 times faster than CFD/HT simulation. Also, the effects of the number of available algebraic equations and retained POD modes on the accuracy of the obtained thermal field are studied.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] Proper orthogonal decomposition for reduced order thermal modeling of air cooled data centers [texte imprimé] / Emad Samadiani, Auteur ; Yogendra Joshi, Auteur . - pp. [071402 -1/14].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 7 (Juillet 2010) . - pp. [071402 -1/14]
Mots-clés : Paper orthogonal decomposition Reduced order thermal modeling Data center Index. décimale : 536 Chaleur. Thermodynamique Résumé : Computational fluid dynamics/heat transfer (CFD/HT) methods are too time consuming and costly to examine the effect of multiple design variables on the system thermal performance, especially for systems with multiple components and interacting physical phenomena. In this paper, a proper orthogonal decomposition (POD) based reduced order thermal modeling approach is presented for complex convective systems. The basic POD technique is used with energy balance equations, and heat flux and/or surface temperature matching to generate a computationally efficient thermal model in terms of the system design variables. The effectiveness of the presented approach is studied through application to an air-cooled data center cell with a floor area of 23.2 m2 and a total power dissipation of 240 kW, with multiple turbulent convective components and five design variables. The method results in average temperature rise prediction error of 1.24°C (4.9%) for different sets of design variables, while it is ~150 times faster than CFD/HT simulation. Also, the effects of the number of available algebraic equations and retained POD modes on the accuracy of the obtained thermal field are studied.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...]