Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Foraboschi, Paolo
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalytical solution of two-layer beam taking into account nonlinear interlayer slip / Foraboschi, Paolo in Journal of engineering mechanics, Vol. 135 N° 10 (Octobre 2009)
[article]
in Journal of engineering mechanics > Vol. 135 N° 10 (Octobre 2009) . - pp. 1129-1146
Titre : Analytical solution of two-layer beam taking into account nonlinear interlayer slip Type de document : texte imprimé Auteurs : Foraboschi, Paolo, Auteur Article en page(s) : pp. 1129-1146 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Composite beams Inelasticity Connections Shear flow Slip Elastoplasticity Analytical techniques. Résumé : This paper presents a fully developed nonlinear analytical (exact) model for analyzing composite beams under transverse bending load. The model reproduces the elements responsible for the relative slip between the layers (shear connectors and interface) with an elastoplastic strain-softening interlayer. Further than the slip, the model predicts stresses due to a given load and ultimate load for debonding of bilayered composite beams. All the details on the mathematical development are presented. This paper advances the state of the art, since the last development available in literature is an analytical (nonexact) linear model. A number of parametric studies are conducted to evaluate the influence of various geometrical and material parameters, the main results of which are presented together with the interpretation, e.g., the dependence of load-carrying capacity, stresses, and deflection on the local nonlinear load-slip relationship. The research proves as well that the shear connection lower and upper bounds (respectively, totally flexible and infinite rigid shear connectors) do not imply any lower and upper bound for the response. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JENMDT&smhode=strre [...] [article] Analytical solution of two-layer beam taking into account nonlinear interlayer slip [texte imprimé] / Foraboschi, Paolo, Auteur . - pp. 1129-1146.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 135 N° 10 (Octobre 2009) . - pp. 1129-1146
Mots-clés : Composite beams Inelasticity Connections Shear flow Slip Elastoplasticity Analytical techniques. Résumé : This paper presents a fully developed nonlinear analytical (exact) model for analyzing composite beams under transverse bending load. The model reproduces the elements responsible for the relative slip between the layers (shear connectors and interface) with an elastoplastic strain-softening interlayer. Further than the slip, the model predicts stresses due to a given load and ultimate load for debonding of bilayered composite beams. All the details on the mathematical development are presented. This paper advances the state of the art, since the last development available in literature is an analytical (nonexact) linear model. A number of parametric studies are conducted to evaluate the influence of various geometrical and material parameters, the main results of which are presented together with the interpretation, e.g., the dependence of load-carrying capacity, stresses, and deflection on the local nonlinear load-slip relationship. The research proves as well that the shear connection lower and upper bounds (respectively, totally flexible and infinite rigid shear connectors) do not imply any lower and upper bound for the response. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JENMDT&smhode=strre [...] Behavior and failure strength of laminated glass beams / Foraboschi, Paolo in Journal of engineering mechanics, Vol. 133 N°12 (Decembre 2007)
[article]
in Journal of engineering mechanics > Vol. 133 N°12 (Decembre 2007) . - pp.1290–1301.
Titre : Behavior and failure strength of laminated glass beams Type de document : texte imprimé Auteurs : Foraboschi, Paolo, Auteur Année de publication : 2007 Article en page(s) : pp.1290–1301. Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Failures Laminates Beams Glass Composite structures Construction materials. Résumé : Despite the increased use of laminated glass (two monolithic layers of glass joined with an elastomeric interlayer—usually PVB—to form a unit) as a cladding material for architectural glazing applications and by now as a structural material, the mechanical properties and the structural capabilities of PVB laminated glass are not well known. This paper presents an analytical model that predicts stress development and ultimate strength of laminated glass beams involving a multilayered system that allows displacements in the shear flexible interlayer. The model may be applied to laminates of arbitrary shape and size under prevailing uniaxial bending. No specific simplifying assumption is made in formulating the procedure, so the modeling inaccuracy is marginal, as proved by comparing theoretical model predictions with test results. The model was then used for assessing the safety and predicting the failure strength of laminated glass products available in the architectural glass marketplace, in order to identify the basis for rational design with glass-polymer laminates. The closed form of the model permits us to both explain the behavior of laminated glass, and correlate the structural performance with the geometrical and mechanical parameters. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A12%281 [...] [article] Behavior and failure strength of laminated glass beams [texte imprimé] / Foraboschi, Paolo, Auteur . - 2007 . - pp.1290–1301.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 133 N°12 (Decembre 2007) . - pp.1290–1301.
Mots-clés : Failures Laminates Beams Glass Composite structures Construction materials. Résumé : Despite the increased use of laminated glass (two monolithic layers of glass joined with an elastomeric interlayer—usually PVB—to form a unit) as a cladding material for architectural glazing applications and by now as a structural material, the mechanical properties and the structural capabilities of PVB laminated glass are not well known. This paper presents an analytical model that predicts stress development and ultimate strength of laminated glass beams involving a multilayered system that allows displacements in the shear flexible interlayer. The model may be applied to laminates of arbitrary shape and size under prevailing uniaxial bending. No specific simplifying assumption is made in formulating the procedure, so the modeling inaccuracy is marginal, as proved by comparing theoretical model predictions with test results. The model was then used for assessing the safety and predicting the failure strength of laminated glass products available in the architectural glass marketplace, in order to identify the basis for rational design with glass-polymer laminates. The closed form of the model permits us to both explain the behavior of laminated glass, and correlate the structural performance with the geometrical and mechanical parameters. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A12%281 [...] Behavior and failure strength of laminated glass beams / Foraboschi, Paolo in Journal of engineering mechanics, Vol. 133 N°11 (Novembre 2007)
[article]
in Journal of engineering mechanics > Vol. 133 N°11 (Novembre 2007) . - pp.1290–1301.
Titre : Behavior and failure strength of laminated glass beams Type de document : texte imprimé Auteurs : Foraboschi, Paolo, Auteur Année de publication : 2007 Article en page(s) : pp.1290–1301. Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Failures Laminates Beams Glass Composite structures Construction materials Résumé : Despite the increased use of laminated glass (two monolithic layers of glass joined with an elastomeric interlayer—usually PVB—to form a unit) as a cladding material for architectural glazing applications and by now as a structural material, the mechanical properties and the structural capabilities of PVB laminated glass are not well known. This paper presents an analytical model that predicts stress development and ultimate strength of laminated glass beams involving a multilayered system that allows displacements in the shear flexible interlayer. The model may be applied to laminates of arbitrary shape and size under prevailing uniaxial bending. No specific simplifying assumption is made in formulating the procedure, so the modeling inaccuracy is marginal, as proved by comparing theoretical model predictions with test results. The model was then used for assessing the safety and predicting the failure strength of laminated glass products available in the architectural glass marketplace, in order to identify the basis for rational design with glass-polymer laminates. The closed form of the model permits us to both explain the behavior of laminated glass, and correlate the structural performance with the geometrical and mechanical parameters. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A12%281 [...] [article] Behavior and failure strength of laminated glass beams [texte imprimé] / Foraboschi, Paolo, Auteur . - 2007 . - pp.1290–1301.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 133 N°11 (Novembre 2007) . - pp.1290–1301.
Mots-clés : Failures Laminates Beams Glass Composite structures Construction materials Résumé : Despite the increased use of laminated glass (two monolithic layers of glass joined with an elastomeric interlayer—usually PVB—to form a unit) as a cladding material for architectural glazing applications and by now as a structural material, the mechanical properties and the structural capabilities of PVB laminated glass are not well known. This paper presents an analytical model that predicts stress development and ultimate strength of laminated glass beams involving a multilayered system that allows displacements in the shear flexible interlayer. The model may be applied to laminates of arbitrary shape and size under prevailing uniaxial bending. No specific simplifying assumption is made in formulating the procedure, so the modeling inaccuracy is marginal, as proved by comparing theoretical model predictions with test results. The model was then used for assessing the safety and predicting the failure strength of laminated glass products available in the architectural glass marketplace, in order to identify the basis for rational design with glass-polymer laminates. The closed form of the model permits us to both explain the behavior of laminated glass, and correlate the structural performance with the geometrical and mechanical parameters. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A12%281 [...]