Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Edward S. Piekos
Documents disponibles écrits par cet auteur
Affiner la rechercheRaman thermometry measurements and thermal simulations for MEMS bridges at pressures from 0.05 torr to 625 torr / Leslie M. Phinney in Journal of heat transfer, Vol. 132 N° 7 (Juillet 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 7 (Juillet 2010) . - pp. [072402-1/9]
Titre : Raman thermometry measurements and thermal simulations for MEMS bridges at pressures from 0.05 torr to 625 torr Type de document : texte imprimé Auteurs : Leslie M. Phinney, Auteur ; Justin R. Serrano, Auteur ; Edward S. Piekos, Auteur Article en page(s) : pp. [072402-1/9] Note générale : Physique Langues : Anglais (eng) Mots-clés : Raman thermometry MEMS Finite element heat conduction simulations Non-continuum gas-phase heat-transfer model Low-pressure effects Suspended microbridge Index. décimale : 536 Chaleur. Thermodynamique Résumé : This paper reports on experimental and computational investigations into the thermal performance of microelectromechanical systems (MEMS) as a function of the pressure of the surrounding gas. High spatial resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 µm wide, 2.25 µm thick, and either 200 µm or 400 µm long in nitrogen atmospheres with pressures ranging from 0.05 Torr to 625 Torr (6.67 Pa–83.3 kPa). Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared with the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The results indicate that gas-phase heat transfer is significant for devices of this size at ambient pressures but becomes minimal as the pressure is reduced below 5 Torr. The model and experimental results are in qualitative agreement, and better quantitative agreement requires increased accuracy in the geometrical and material property values.
DEWEY : 536 ISSN : 0022-1481 [article] Raman thermometry measurements and thermal simulations for MEMS bridges at pressures from 0.05 torr to 625 torr [texte imprimé] / Leslie M. Phinney, Auteur ; Justin R. Serrano, Auteur ; Edward S. Piekos, Auteur . - pp. [072402-1/9].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 7 (Juillet 2010) . - pp. [072402-1/9]
Mots-clés : Raman thermometry MEMS Finite element heat conduction simulations Non-continuum gas-phase heat-transfer model Low-pressure effects Suspended microbridge Index. décimale : 536 Chaleur. Thermodynamique Résumé : This paper reports on experimental and computational investigations into the thermal performance of microelectromechanical systems (MEMS) as a function of the pressure of the surrounding gas. High spatial resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 µm wide, 2.25 µm thick, and either 200 µm or 400 µm long in nitrogen atmospheres with pressures ranging from 0.05 Torr to 625 Torr (6.67 Pa–83.3 kPa). Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared with the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The results indicate that gas-phase heat transfer is significant for devices of this size at ambient pressures but becomes minimal as the pressure is reduced below 5 Torr. The model and experimental results are in qualitative agreement, and better quantitative agreement requires increased accuracy in the geometrical and material property values.
DEWEY : 536 ISSN : 0022-1481