Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Andrade, Anísio
Documents disponibles écrits par cet auteur
Affiner la rechercheFlexural-torsional buckling of cantilever Strip beam-columns with linearly varying depth / Challamel, Noêl in Journal of engineering mechanics, Vol. 136 N° 6 (Juin 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 6 (Juin 2010) . - pp. 787-800
Titre : Flexural-torsional buckling of cantilever Strip beam-columns with linearly varying depth Type de document : texte imprimé Auteurs : Challamel, Noêl, Auteur ; Andrade, Anísio, Auteur ; Camotim, Dinar, Auteur Article en page(s) : pp. 787-800 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Lateral stability Buckling Beam columns Numerical analysis Differential equations Cantilevers Shell structures Finite element method. Résumé : In this paper, one investigates the elastic flexural-torsional buckling of linearly tapered cantilever strip beam-columns acted by axial and transversal point loads applied at the tip. For prismatic and wedge-shaped members, the governing differential equation is integrated in closed form by means of confluent hypergeometric functions. For general tapered members (0<(hmax−hmin)/hmax<1), the solution to the boundary value problem is obtained in the form of a Frobenius' series, which is shown to converge in the interior of the domain and at the boundary if and only if 0<(hmax−hmin)/hmax<1/2. Therefore, for 1/2<=(hmax−hmin)/hmax<1 the Frobenius' series solution cannot be used to establish the characteristic equation for the cantilever beam-columns; the problem is then solved numerically by means of a collocation procedure. Some of the analytical solutions (buckling loads) were compared with the results of shell finite-element analyses and an excellent agreement was found in all cases, thus validating the mathematical model and confirming the correctness of the analytical results. The paper closes with a discussion on the convexity of the stability domain (in the load parameter space) and the accuracy of approximations based on Dunkerley-type theorems. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JENMDT&smode=strres [...] [article] Flexural-torsional buckling of cantilever Strip beam-columns with linearly varying depth [texte imprimé] / Challamel, Noêl, Auteur ; Andrade, Anísio, Auteur ; Camotim, Dinar, Auteur . - pp. 787-800.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 6 (Juin 2010) . - pp. 787-800
Mots-clés : Lateral stability Buckling Beam columns Numerical analysis Differential equations Cantilevers Shell structures Finite element method. Résumé : In this paper, one investigates the elastic flexural-torsional buckling of linearly tapered cantilever strip beam-columns acted by axial and transversal point loads applied at the tip. For prismatic and wedge-shaped members, the governing differential equation is integrated in closed form by means of confluent hypergeometric functions. For general tapered members (0<(hmax−hmin)/hmax<1), the solution to the boundary value problem is obtained in the form of a Frobenius' series, which is shown to converge in the interior of the domain and at the boundary if and only if 0<(hmax−hmin)/hmax<1/2. Therefore, for 1/2<=(hmax−hmin)/hmax<1 the Frobenius' series solution cannot be used to establish the characteristic equation for the cantilever beam-columns; the problem is then solved numerically by means of a collocation procedure. Some of the analytical solutions (buckling loads) were compared with the results of shell finite-element analyses and an excellent agreement was found in all cases, thus validating the mathematical model and confirming the correctness of the analytical results. The paper closes with a discussion on the convexity of the stability domain (in the load parameter space) and the accuracy of approximations based on Dunkerley-type theorems. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JENMDT&smode=strres [...]