Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Kumar Singh, Mritunjay
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalytical solution for conservative solute transport in one-dimensional homogeneous porous formations with time-dependent velocity / Kumar Singh, Mritunjay in Journal of engineering mechanics, Vol. 135 N° 9 (Septembre 2009)
[article]
in Journal of engineering mechanics > Vol. 135 N° 9 (Septembre 2009) . - pp. 1015-1021
Titre : Analytical solution for conservative solute transport in one-dimensional homogeneous porous formations with time-dependent velocity Type de document : texte imprimé Auteurs : Kumar Singh, Mritunjay, Auteur ; Singh, Vijay P., Auteur ; Singh, Premlata, Auteur Article en page(s) : pp. 1015-1021 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Groundwater pollution Nonpoint pollution Point pollution Aquifers Unsteady flow Solutes Analytical techniques. Résumé : The space-time variation in contaminant concentration in unsteady flow in a homogeneous finite aquifer subjected to point source contamination is analytically derived under two conditions: (1) the flow velocity in the aquifer is of sinusoidal form; and (2) the flow velocity is an exponentially decreasing function. The analytical solution is illustrated using an example. Analytical solutions are perhaps most useful for benchmarking numerical codes and solutions. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JENMDT&smode=strres [...] [article] Analytical solution for conservative solute transport in one-dimensional homogeneous porous formations with time-dependent velocity [texte imprimé] / Kumar Singh, Mritunjay, Auteur ; Singh, Vijay P., Auteur ; Singh, Premlata, Auteur . - pp. 1015-1021.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 135 N° 9 (Septembre 2009) . - pp. 1015-1021
Mots-clés : Groundwater pollution Nonpoint pollution Point pollution Aquifers Unsteady flow Solutes Analytical techniques. Résumé : The space-time variation in contaminant concentration in unsteady flow in a homogeneous finite aquifer subjected to point source contamination is analytically derived under two conditions: (1) the flow velocity in the aquifer is of sinusoidal form; and (2) the flow velocity is an exponentially decreasing function. The analytical solution is illustrated using an example. Analytical solutions are perhaps most useful for benchmarking numerical codes and solutions. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JENMDT&smode=strres [...] Analytical solution for one - dimensional solute dispersion with time - dependent source concentration along uniform groundwater flow in a homogeneous porous formation / Kumar Singh, Mritunjay in Journal of engineering mechanics, Vol. 138 N° 8 (Août 2012)
[article]
in Journal of engineering mechanics > Vol. 138 N° 8 (Août 2012) . - pp.1045–1056.
Titre : Analytical solution for one - dimensional solute dispersion with time - dependent source concentration along uniform groundwater flow in a homogeneous porous formation Type de document : texte imprimé Auteurs : Kumar Singh, Mritunjay, Auteur ; Shafique Ahamad, Auteur ; Singh, Vijay P., Auteur Année de publication : 2012 Article en page(s) : pp.1045–1056. Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Solute transport Groundwater contamination Aquifer Analytical solution Résumé : An analytical solution for the space-time variation of contaminant concentration in one-dimensional uniform groundwater flow in a homogenous semi-infinite porous formation (e.g., aquifer) subjected to time-dependent source contamination is derived. The temporally dependent dispersion in the aquifer is investigated under two conditions. First, the temporally dependent dispersion distribution in the aquifer is considered as a sinusoidally varying function and, second, the temporally dependent dispersion distribution is treated as an exponentially increasing function of time. It is assumed that initially the aquifer is not solute free; i.e., the aquifer is not clean and the initial concentration is an exponentially decreasing function of the space variable and is tending to zero toward infinity. The concept that dispersion is directly proportional to the seepage velocity is employed. The analytical solution is illustrated using an example and may help benchmark a numerical code and solution. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000384 [article] Analytical solution for one - dimensional solute dispersion with time - dependent source concentration along uniform groundwater flow in a homogeneous porous formation [texte imprimé] / Kumar Singh, Mritunjay, Auteur ; Shafique Ahamad, Auteur ; Singh, Vijay P., Auteur . - 2012 . - pp.1045–1056.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 138 N° 8 (Août 2012) . - pp.1045–1056.
Mots-clés : Solute transport Groundwater contamination Aquifer Analytical solution Résumé : An analytical solution for the space-time variation of contaminant concentration in one-dimensional uniform groundwater flow in a homogenous semi-infinite porous formation (e.g., aquifer) subjected to time-dependent source contamination is derived. The temporally dependent dispersion in the aquifer is investigated under two conditions. First, the temporally dependent dispersion distribution in the aquifer is considered as a sinusoidally varying function and, second, the temporally dependent dispersion distribution is treated as an exponentially increasing function of time. It is assumed that initially the aquifer is not solute free; i.e., the aquifer is not clean and the initial concentration is an exponentially decreasing function of the space variable and is tending to zero toward infinity. The concept that dispersion is directly proportional to the seepage velocity is employed. The analytical solution is illustrated using an example and may help benchmark a numerical code and solution. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000384