Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Mapelli, Ferdinando Luigi
Documents disponibles écrits par cet auteur
Affiner la recherchePlug-n hybrid electric vehicle / Mapelli, Ferdinando Luigi in IEEE transactions on industrial electronics, Vol. 57 N° 2 (Fevrier 2010)
[article]
in IEEE transactions on industrial electronics > Vol. 57 N° 2 (Fevrier 2010) . - pp. 598 - 607
Titre : Plug-n hybrid electric vehicle : modeling, prototype realization, and inverter losses reduction analysis Type de document : texte imprimé Auteurs : Mapelli, Ferdinando Luigi, Auteur ; Tarsitano, Davide, Auteur ; Mauri, Marco, Auteur Article en page(s) : pp. 598 - 607 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : Direct self-control (DSC) Energetic model Inverter efficiency Inverter losses Modeling and simulation plug-in hybrid electric vehicle (PHEV) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : Nowadays, the greatest part of the effort to reduce pollution emissions is directed toward the hybridization of automotive drive trains. In particular, the design of hybrid vehicles requires a complete system analysis, including the optimization of the electric and electronic devices installed on the vehicle and the design of all the mechanical connections between the different power sources to reach the required performances. The aim of this paper is to describe the design and prototype realization of a plug-in hybrid electrical vehicle (PHEV). Specifically, an energetic model was developed in order to analyze and optimize the power flux between the different parts. This model was experimentally validated using a prototype PHEV. In addition, in order to improve the driving range in an all-electric model (all-electric range), a detailed analysis of the inverter control was performed, because this component is one of the key components of the power train. In order to reduce inverter losses and dimensions, several control methods can be adopted. In this paper, a direct self-control strategy for reducing the inverter losses is presented and validated. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5208256 [article] Plug-n hybrid electric vehicle : modeling, prototype realization, and inverter losses reduction analysis [texte imprimé] / Mapelli, Ferdinando Luigi, Auteur ; Tarsitano, Davide, Auteur ; Mauri, Marco, Auteur . - pp. 598 - 607.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 57 N° 2 (Fevrier 2010) . - pp. 598 - 607
Mots-clés : Direct self-control (DSC) Energetic model Inverter efficiency Inverter losses Modeling and simulation plug-in hybrid electric vehicle (PHEV) Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : Nowadays, the greatest part of the effort to reduce pollution emissions is directed toward the hybridization of automotive drive trains. In particular, the design of hybrid vehicles requires a complete system analysis, including the optimization of the electric and electronic devices installed on the vehicle and the design of all the mechanical connections between the different power sources to reach the required performances. The aim of this paper is to describe the design and prototype realization of a plug-in hybrid electrical vehicle (PHEV). Specifically, an energetic model was developed in order to analyze and optimize the power flux between the different parts. This model was experimentally validated using a prototype PHEV. In addition, in order to improve the driving range in an all-electric model (all-electric range), a detailed analysis of the inverter control was performed, because this component is one of the key components of the power train. In order to reduce inverter losses and dimensions, several control methods can be adopted. In this paper, a direct self-control strategy for reducing the inverter losses is presented and validated. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5208256