Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Neri, Ferrante
Documents disponibles écrits par cet auteur
Affiner la rechercheOptimization of delayed-state Kalman-filter-based algorithm via differential evolution for sensorless control of induction motors / Salvatore, Nadia in IEEE transactions on industrial electronics, Vol. 57 N° 1 (Janvier 2010)
[article]
in IEEE transactions on industrial electronics > Vol. 57 N° 1 (Janvier 2010) . - pp. 385 - 394
Titre : Optimization of delayed-state Kalman-filter-based algorithm via differential evolution for sensorless control of induction motors Type de document : texte imprimé Auteurs : Salvatore, Nadia, Auteur ; Caponio, Andrea, Auteur ; Neri, Ferrante, Auteur Article en page(s) : pp. 385 - 394 Note générale : Génie électrique Langues : Anglais (eng) Mots-clés : AC motor drives Algorithms Covariance matrices Evolutionary algorithms (EAs) Induction-motor (IM) drives Kalman filtering Optimization methods Parameter estimation Speed sensorless State estimation Velocity control Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper proposes the employment of the differential evolution (DE) to offline optimize the covariance matrices of a new reduced delayed-state Kalman-filter (DSKF)-based algorithm which estimates the stator-flux linkage components, in the stationary reference frame, to realize sensorless control of induction motors (IMs). The DSKF-based algorithm uses the derivatives of the stator-flux components as mathematical model and the stator-voltage equations as observation model so that only a vector of four variables has to be offline optimized. Numerical results, carried out using a low-speed training test, show that the proposed DE-based approach is very promising and clearly outperforms a classical local search and three popular metaheuristics in terms of quality of the final solution for the problem considered in this paper. A novel simple stator-flux-oriented sliding mode (SFO-SM) control scheme is online used in conjunction with the optimized DSKF-based algorithm to improve the robustness of the sensorless IM drive at low speed. The SFO-SM control scheme has closed loops of torque and stator-flux linkage without proportional-plus-integral controllers so that a minimum number of gains has to be tuned. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5280262 [article] Optimization of delayed-state Kalman-filter-based algorithm via differential evolution for sensorless control of induction motors [texte imprimé] / Salvatore, Nadia, Auteur ; Caponio, Andrea, Auteur ; Neri, Ferrante, Auteur . - pp. 385 - 394.
Génie électrique
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 57 N° 1 (Janvier 2010) . - pp. 385 - 394
Mots-clés : AC motor drives Algorithms Covariance matrices Evolutionary algorithms (EAs) Induction-motor (IM) drives Kalman filtering Optimization methods Parameter estimation Speed sensorless State estimation Velocity control Index. décimale : 621.38 Dispositifs électroniques. Tubes à électrons. Photocellules. Accélérateurs de particules. Tubes à rayons X Résumé : This paper proposes the employment of the differential evolution (DE) to offline optimize the covariance matrices of a new reduced delayed-state Kalman-filter (DSKF)-based algorithm which estimates the stator-flux linkage components, in the stationary reference frame, to realize sensorless control of induction motors (IMs). The DSKF-based algorithm uses the derivatives of the stator-flux components as mathematical model and the stator-voltage equations as observation model so that only a vector of four variables has to be offline optimized. Numerical results, carried out using a low-speed training test, show that the proposed DE-based approach is very promising and clearly outperforms a classical local search and three popular metaheuristics in terms of quality of the final solution for the problem considered in this paper. A novel simple stator-flux-oriented sliding mode (SFO-SM) control scheme is online used in conjunction with the optimized DSKF-based algorithm to improve the robustness of the sensorless IM drive at low speed. The SFO-SM control scheme has closed loops of torque and stator-flux linkage without proportional-plus-integral controllers so that a minimum number of gains has to be tuned. DEWEY : 621.38 ISSN : 0278-0046 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5280262