Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Marina Vannucci
Documents disponibles écrits par cet auteur
Affiner la rechercheProbabilistic models for modulus of elasticity of self-consolidated concrete / Gardoni, Paolo in Journal of engineering mechanics, Vol. 135 N° 4 (Avril 2009)
[article]
in Journal of engineering mechanics > Vol. 135 N° 4 (Avril 2009) . - pp. 295-306
Titre : Probabilistic models for modulus of elasticity of self-consolidated concrete : bayesian approach Type de document : texte imprimé Auteurs : Gardoni, Paolo, Auteur ; David Trejo, Auteur ; Marina Vannucci, Auteur Année de publication : 2009 Article en page(s) : pp. 295-306 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Bayesian analysis Elasticity Probability Concrete. Résumé : Current models of the modulus of elasticity, E, of concrete recommended by the American Concrete Institute and the American Association of State Highway and Transportation Officials are derived for normally vibrated concrete (NVC). Because self-consolidated concrete (SCC) mixtures differ from NVC in the quantities and types of constituent materials, supplementary cementing materials, and chemical admixtures, the current models, may not take into consideration the complexity of SCC, and thus they may predict the E of SCC inaccurately. Although some authors recommend specific models to predict E of SCC, they include only a single variable of assumed importance, namely, the design compressive strength of concrete, fc[prime]. However, there are other parameters that may need to be accounted for while developing a prediction model for E of SCC. In this paper, a Bayesian variable selection method is used to identify the significant parameters in predicting the E of SCC, and more accurate models for E are generated using these variables. The models have a parsimonious parametrization for ease of use in practice and properly account for the prevailing uncertainties. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JENMDT000 [...] [article] Probabilistic models for modulus of elasticity of self-consolidated concrete : bayesian approach [texte imprimé] / Gardoni, Paolo, Auteur ; David Trejo, Auteur ; Marina Vannucci, Auteur . - 2009 . - pp. 295-306.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 135 N° 4 (Avril 2009) . - pp. 295-306
Mots-clés : Bayesian analysis Elasticity Probability Concrete. Résumé : Current models of the modulus of elasticity, E, of concrete recommended by the American Concrete Institute and the American Association of State Highway and Transportation Officials are derived for normally vibrated concrete (NVC). Because self-consolidated concrete (SCC) mixtures differ from NVC in the quantities and types of constituent materials, supplementary cementing materials, and chemical admixtures, the current models, may not take into consideration the complexity of SCC, and thus they may predict the E of SCC inaccurately. Although some authors recommend specific models to predict E of SCC, they include only a single variable of assumed importance, namely, the design compressive strength of concrete, fc[prime]. However, there are other parameters that may need to be accounted for while developing a prediction model for E of SCC. In this paper, a Bayesian variable selection method is used to identify the significant parameters in predicting the E of SCC, and more accurate models for E are generated using these variables. The models have a parsimonious parametrization for ease of use in practice and properly account for the prevailing uncertainties. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JENMDT000 [...]