Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Javier V. Goicochea
Documents disponibles écrits par cet auteur
Affiner la rechercheHierarchical modeling of heat transfer in silicon-based electronic devices / Javier V. Goicochea in Journal of heat transfer, Vol. 132 N° 10 (Octobre 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 10 (Octobre 2010) . - pp. [102401/1-11]
Titre : Hierarchical modeling of heat transfer in silicon-based electronic devices Type de document : texte imprimé Auteurs : Javier V. Goicochea, Auteur ; Marcela Madrid, Auteur ; Cristina Amon, Auteur Année de publication : 2010 Article en page(s) : pp. [102401/1-11] Note générale : Physique Langues : Anglais (eng) Mots-clés : Boltzmann equation Heat transfer Microfluidics Molecular dynamics method Phonons Silicon Thermal conductivity Index. décimale : 536 Chaleur. Thermodynamique Résumé : A hierarchical model of heat transfer for the thermal analysis of electronic devices is presented. The integration of participating scales (from nanoscale to macroscales) is achieved by (i) estimating the input parameters and thermal properties to solve the Boltzmann transport equation (BTE) for phonons using molecular dynamics (MD), including phonon relaxation times, dispersion relations, group velocities, and specific heat, (ii) applying quantum corrections to the MD results to make them suitable for the solution of BTE, and (iii) numerically solving the BTE in space and time subject to different boundary and initial conditions. We apply our hierarchical model to estimate the silicon out-of-plane thermal conductivity and the thermal response of an silicon on insulator (SOI) device subject to Joule heating. We have found that relative phonon contribution to the overall conductivity changes as the dimension of the domain is reduced as a result of phonon confinement. The observed reduction in the thermal conductivity is produced by the progressive transition of modes in the diffusive regime (as in the bulk) to transitional and ballistic regimes as the film thickness is decreased. In addition, we have found that relaxation time expressions for optical phonons are important to describe the transient response of SOI devices and that the characteristic transport regimes, determined with Holland and Klemens phonon models, differ significantly.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] Hierarchical modeling of heat transfer in silicon-based electronic devices [texte imprimé] / Javier V. Goicochea, Auteur ; Marcela Madrid, Auteur ; Cristina Amon, Auteur . - 2010 . - pp. [102401/1-11].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 10 (Octobre 2010) . - pp. [102401/1-11]
Mots-clés : Boltzmann equation Heat transfer Microfluidics Molecular dynamics method Phonons Silicon Thermal conductivity Index. décimale : 536 Chaleur. Thermodynamique Résumé : A hierarchical model of heat transfer for the thermal analysis of electronic devices is presented. The integration of participating scales (from nanoscale to macroscales) is achieved by (i) estimating the input parameters and thermal properties to solve the Boltzmann transport equation (BTE) for phonons using molecular dynamics (MD), including phonon relaxation times, dispersion relations, group velocities, and specific heat, (ii) applying quantum corrections to the MD results to make them suitable for the solution of BTE, and (iii) numerically solving the BTE in space and time subject to different boundary and initial conditions. We apply our hierarchical model to estimate the silicon out-of-plane thermal conductivity and the thermal response of an silicon on insulator (SOI) device subject to Joule heating. We have found that relative phonon contribution to the overall conductivity changes as the dimension of the domain is reduced as a result of phonon confinement. The observed reduction in the thermal conductivity is produced by the progressive transition of modes in the diffusive regime (as in the bulk) to transitional and ballistic regimes as the film thickness is decreased. In addition, we have found that relaxation time expressions for optical phonons are important to describe the transient response of SOI devices and that the characteristic transport regimes, determined with Holland and Klemens phonon models, differ significantly.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] Surface functionalization mechanisms of enhancing heat transfer at solid-liquid interfaces / Javier V. Goicochea in Journal of heat transfer, Vol. 133 N° 8 (Août 2011)
[article]
in Journal of heat transfer > Vol. 133 N° 8 (Août 2011) . - pp. [082401/1-6]
Titre : Surface functionalization mechanisms of enhancing heat transfer at solid-liquid interfaces Type de document : texte imprimé Auteurs : Javier V. Goicochea, Auteur ; Ming Hu, Auteur Année de publication : 2011 Article en page(s) : pp. [082401/1-6] Note générale : Physique Langues : Anglais (eng) Mots-clés : Surface functionalization Vivrational matching Interface resistance Conductance Heat transfer Molecular dynamics Solid-liquid Index. décimale : 536 Chaleur. Thermodynamique Résumé : Two mechanisms that enhance heat dissipation at solid-liquid interfaces are investigated from the atomistic point of view using nonequilibrium molecular dynamics simulation. The mechanisms include surface functionalization, where –OH terminated headgroups and self-assembled monolayers (SAMs) with different chain lengths are used to recondition and modify the hydrophilicity of silica surface, and vibrational matching between crystalline silica and liquid water, where three-dimensional nanopillars are grown at the interface in the direction of the heat flux with different lengths to rectify the vibrational frequencies of surface atoms. The heat dissipation is measured in terms of the thermal conductance of the solid-liquid interface and is obtained by imposing a one-dimensional heat flux along the simulation domain. A comparison with reported numerical and experimental thermal conductance measurements for similar interfaces indicates that the thermal conductance is enhanced by 1.8–3.2 times when the silica surface is reconditioned with hydrophilic groups. The enhancement is further promoted by SAMs, which results in a 20% higher thermal conductance compared with that of the fully hydroxylated silica surface. Likewise, the presence of nanopillars enhances the interface thermal conductance by 2.6 times compared with a bare surface (without nanopillars). Moreover, for different nanopillar densities, the conductance increases linearly with the length of the pillar and saturates at around 4.26 nm. Changes in the vibrational spectrum of surface atoms and water confinement effects are found to be responsible for the increase in conductance. The modification of surface vibrational states provides a tunable path to enhance heat dissipation, which can also be easily applied to other fluids and interfaces.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013300 [...] [article] Surface functionalization mechanisms of enhancing heat transfer at solid-liquid interfaces [texte imprimé] / Javier V. Goicochea, Auteur ; Ming Hu, Auteur . - 2011 . - pp. [082401/1-6].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 133 N° 8 (Août 2011) . - pp. [082401/1-6]
Mots-clés : Surface functionalization Vivrational matching Interface resistance Conductance Heat transfer Molecular dynamics Solid-liquid Index. décimale : 536 Chaleur. Thermodynamique Résumé : Two mechanisms that enhance heat dissipation at solid-liquid interfaces are investigated from the atomistic point of view using nonequilibrium molecular dynamics simulation. The mechanisms include surface functionalization, where –OH terminated headgroups and self-assembled monolayers (SAMs) with different chain lengths are used to recondition and modify the hydrophilicity of silica surface, and vibrational matching between crystalline silica and liquid water, where three-dimensional nanopillars are grown at the interface in the direction of the heat flux with different lengths to rectify the vibrational frequencies of surface atoms. The heat dissipation is measured in terms of the thermal conductance of the solid-liquid interface and is obtained by imposing a one-dimensional heat flux along the simulation domain. A comparison with reported numerical and experimental thermal conductance measurements for similar interfaces indicates that the thermal conductance is enhanced by 1.8–3.2 times when the silica surface is reconditioned with hydrophilic groups. The enhancement is further promoted by SAMs, which results in a 20% higher thermal conductance compared with that of the fully hydroxylated silica surface. Likewise, the presence of nanopillars enhances the interface thermal conductance by 2.6 times compared with a bare surface (without nanopillars). Moreover, for different nanopillar densities, the conductance increases linearly with the length of the pillar and saturates at around 4.26 nm. Changes in the vibrational spectrum of surface atoms and water confinement effects are found to be responsible for the increase in conductance. The modification of surface vibrational states provides a tunable path to enhance heat dissipation, which can also be easily applied to other fluids and interfaces.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013300 [...] Thermal properties for bulk silicon based on the determination of relaxation times using molecular dynamics / Javier V. Goicochea in Journal of heat transfer, Vol. 132 N° 1 (Janvier 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 1 (Janvier 2010) . - pp. [012401-1/11]
Titre : Thermal properties for bulk silicon based on the determination of relaxation times using molecular dynamics Type de document : texte imprimé Auteurs : Javier V. Goicochea, Auteur ; Marcela Madrid, Auteur ; Cristina Amon, Auteur Article en page(s) : pp. [012401-1/11] Note générale : Physique Langues : Anglais (eng) Mots-clés : Boltzmann equation Elemental semiconductors Lattice constants Molecular dynamics method Phonon dispersion relations Potential energy functions Silicon Thermal analysis Thermal conductivity Thermal expansion Total energy Index. décimale : 536 Chaleur. Thermodynamique Résumé : Molecular dynamics simulations are performed to estimate acoustical and optical phonon relaxation times, dispersion relations, group velocities, and specific heat of silicon needed to solve the Boltzmann transport equation (BTE) at 300 K and 1000 K. The relaxation times are calculated from the temporal decay of the autocorrelation function of the fluctuation of total energy of each normal mode in the <100> family of directions, where the total energy of each mode is obtained from the normal mode decomposition of the motion of the silicon atoms over a period of time. Additionally, silicon dispersion relations are directly determined from the equipartition theorem obtained from the normal mode decomposition. The impact of the anharmonic nature of the potential energy function on the thermal expansion of the crystal is determined by computing the lattice parameter at the cited temperatures using a NPT (i.e., constant number of atoms, pressure, and temperature) ensemble, and are compared with experimental values reported in the literature and with those computed analytically using the quasiharmonic approximation. The dependence of the relaxation times with respect to the frequency is identified with two functions that follow the functional form of the relaxation time expressions reported in the literature. From these functions a simplified version of relaxation times for each normal mode is extracted. Properties, such as group and phase velocities, thermal conductivity, and mean free path, needed to further develop a methodology for the thermal analysis of electronic devices (i.e., from nano- to macroscales) are determined once the relaxation times and dispersion relations are obtained. The thermal properties are validated by comparing the BTE-based thermal conductivity against the predictions obtained from the Green–Kubo method. It is found that the relaxation times closely resemble the ones obtained from perturbation theory at high temperatures; the contribution to the thermal conductivity of the transverse acoustic, longitudinal acoustic, and longitudinal optical modes being approximately 30%, 60%, and 10%, respectively, and the contribution of the transverse optical mode negligible.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] Thermal properties for bulk silicon based on the determination of relaxation times using molecular dynamics [texte imprimé] / Javier V. Goicochea, Auteur ; Marcela Madrid, Auteur ; Cristina Amon, Auteur . - pp. [012401-1/11].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 1 (Janvier 2010) . - pp. [012401-1/11]
Mots-clés : Boltzmann equation Elemental semiconductors Lattice constants Molecular dynamics method Phonon dispersion relations Potential energy functions Silicon Thermal analysis Thermal conductivity Thermal expansion Total energy Index. décimale : 536 Chaleur. Thermodynamique Résumé : Molecular dynamics simulations are performed to estimate acoustical and optical phonon relaxation times, dispersion relations, group velocities, and specific heat of silicon needed to solve the Boltzmann transport equation (BTE) at 300 K and 1000 K. The relaxation times are calculated from the temporal decay of the autocorrelation function of the fluctuation of total energy of each normal mode in the <100> family of directions, where the total energy of each mode is obtained from the normal mode decomposition of the motion of the silicon atoms over a period of time. Additionally, silicon dispersion relations are directly determined from the equipartition theorem obtained from the normal mode decomposition. The impact of the anharmonic nature of the potential energy function on the thermal expansion of the crystal is determined by computing the lattice parameter at the cited temperatures using a NPT (i.e., constant number of atoms, pressure, and temperature) ensemble, and are compared with experimental values reported in the literature and with those computed analytically using the quasiharmonic approximation. The dependence of the relaxation times with respect to the frequency is identified with two functions that follow the functional form of the relaxation time expressions reported in the literature. From these functions a simplified version of relaxation times for each normal mode is extracted. Properties, such as group and phase velocities, thermal conductivity, and mean free path, needed to further develop a methodology for the thermal analysis of electronic devices (i.e., from nano- to macroscales) are determined once the relaxation times and dispersion relations are obtained. The thermal properties are validated by comparing the BTE-based thermal conductivity against the predictions obtained from the Green–Kubo method. It is found that the relaxation times closely resemble the ones obtained from perturbation theory at high temperatures; the contribution to the thermal conductivity of the transverse acoustic, longitudinal acoustic, and longitudinal optical modes being approximately 30%, 60%, and 10%, respectively, and the contribution of the transverse optical mode negligible.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...]