Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur X. H. Xiao
Documents disponibles écrits par cet auteur
Affiner la rechercheThree-dimensional structural translation and rotation measurement using monocular videogrammetry / C. C. Chang in Journal of engineering mechanics, Vol. 136 N° 7 (Juillet 2010)
[article]
in Journal of engineering mechanics > Vol. 136 N° 7 (Juillet 2010) . - pp. 840-848
Titre : Three-dimensional structural translation and rotation measurement using monocular videogrammetry Type de document : texte imprimé Auteurs : C. C. Chang, Auteur ; X. H. Xiao, Auteur Article en page(s) : pp. 840-848 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Photogrammetry Measurement Three-dimensional analysis Displacement Rotation. Résumé : Measuring displacement for large-scale structures has always been an important yet challenging task. In most applications, it is not feasible to provide a stationary platform at the location where its displacements need to be measured. Recently, image-based technique for three-dimensional (3D) displacement measurement has been developed and proven to be applicable to civil engineering structures. Most of these developments, however, use two or more cameras and require sophisticated calibration using a total station. In this paper, we present a single-camera approach that can simultaneously measure both 3D translation and rotation of a planar target attached on a structure. The intrinsic parameters of the camera are first obtained using a planar calibration board arbitrarily positioned around the target location. The obtained intrinsic parameters establish the relationship between the 3D camera coordinates and the two-dimensional image coordinates. These parameters can then be used to extract the rotation and translation of the planar target using recorded image sequence. The proposed technique is illustrated using two laboratory tests and one field test. Results show that the proposed monocular videogrammetric technique is a simple and effective alternative method to measure 3D translation and rotation for civil engineering structures. It should be noted that the proposed technique cannot measure translation along the direction perpendicular to the image plane. Hence, proper caution should be taken when placing target and camera. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JENMDT000 [...] [article] Three-dimensional structural translation and rotation measurement using monocular videogrammetry [texte imprimé] / C. C. Chang, Auteur ; X. H. Xiao, Auteur . - pp. 840-848.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 136 N° 7 (Juillet 2010) . - pp. 840-848
Mots-clés : Photogrammetry Measurement Three-dimensional analysis Displacement Rotation. Résumé : Measuring displacement for large-scale structures has always been an important yet challenging task. In most applications, it is not feasible to provide a stationary platform at the location where its displacements need to be measured. Recently, image-based technique for three-dimensional (3D) displacement measurement has been developed and proven to be applicable to civil engineering structures. Most of these developments, however, use two or more cameras and require sophisticated calibration using a total station. In this paper, we present a single-camera approach that can simultaneously measure both 3D translation and rotation of a planar target attached on a structure. The intrinsic parameters of the camera are first obtained using a planar calibration board arbitrarily positioned around the target location. The obtained intrinsic parameters establish the relationship between the 3D camera coordinates and the two-dimensional image coordinates. These parameters can then be used to extract the rotation and translation of the planar target using recorded image sequence. The proposed technique is illustrated using two laboratory tests and one field test. Results show that the proposed monocular videogrammetric technique is a simple and effective alternative method to measure 3D translation and rotation for civil engineering structures. It should be noted that the proposed technique cannot measure translation along the direction perpendicular to the image plane. Hence, proper caution should be taken when placing target and camera. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JENMDT000 [...]