Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Satish G. Kandlikar
Documents disponibles écrits par cet auteur
Affiner la rechercheHeat transfer mechanisms during flow boiling in microchannels / Satish G. Kandlikar in Journal of heat transfer, Vol. 134 N° 1 (Janvier 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 1 (Janvier 2012) . - 01 p.
Titre : Heat transfer mechanisms during flow boiling in microchannels Type de document : texte imprimé Auteurs : Satish G. Kandlikar, Auteur Année de publication : 2012 Article en page(s) : 01 p. Note générale : Heat transfer Langues : Anglais (eng) Mots-clés : Boiling Contact angle Evaporation Heat transfer Microchannel flow Surface tension Index. décimale : 536 Chaleur. Thermodynamique Note de contenu : Closure to “Discussion of `Heat Transfer Mechanisms During Flow Boiling in Microchannels' ” (2012, ASME J. Heat Transfer, 134, p. 015501) DEWEY : 536 ISSN : 0022-1481 En ligne : http://www.asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013400 [...] [article] Heat transfer mechanisms during flow boiling in microchannels [texte imprimé] / Satish G. Kandlikar, Auteur . - 2012 . - 01 p.
Heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 1 (Janvier 2012) . - 01 p.
Mots-clés : Boiling Contact angle Evaporation Heat transfer Microchannel flow Surface tension Index. décimale : 536 Chaleur. Thermodynamique Note de contenu : Closure to “Discussion of `Heat Transfer Mechanisms During Flow Boiling in Microchannels' ” (2012, ASME J. Heat Transfer, 134, p. 015501) DEWEY : 536 ISSN : 0022-1481 En ligne : http://www.asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO00013400 [...] Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels / Dwight Cooke in Journal of heat transfer, Vol. 133 N° 5 (Mai 2011)
[article]
in Journal of heat transfer > Vol. 133 N° 5 (Mai 2011) . - pp. [052902/1-9]
Titre : Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels Type de document : texte imprimé Auteurs : Dwight Cooke, Auteur ; Satish G. Kandlikar, Auteur Année de publication : 2011 Article en page(s) : pp. [052902/1-9] Note générale : Physique Langues : Anglais (eng) Mots-clés : Pool boiling Heat transfer enhancement Microchannels Grooves Bubble dynamics Index. décimale : 536 Chaleur. Thermodynamique Résumé : Pool boiling is of interest in high heat flux applications because of its potential for removing large amount of heat resulting from the latent heat of evaporation and little pressure drop penalty for circulating coolant through the system. However, the heat transfer performance of pool boiling systems is not adequate to match the cooling ability provided by enhanced microchannels operating under single-phase conditions. The objective of this work is to evaluate the pool boiling performance of structured surface features etched on a silicon chip. The performance is normalized with respect to a plain chip. This investigation also focuses on the bubble dynamics on plain and structured microchannel surfaces under various heat fluxes in an effort to understand the underlying heat transfer mechanism. It was determined that surface modifications to silicon chips can improve the heat transfer coefficient by a factor up to 3.4 times the performance of a plain chip. Surfaces with microchannels have shown to be efficient for boiling heat transfer by allowing liquid to flow through the open channels and wet the heat transfer surface while vapor is generated. This work is expected to lead to improved enhancement features for extending the pool boiling option to meet the high heat flux removal demands in electronic cooling applications.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels [texte imprimé] / Dwight Cooke, Auteur ; Satish G. Kandlikar, Auteur . - 2011 . - pp. [052902/1-9].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 133 N° 5 (Mai 2011) . - pp. [052902/1-9]
Mots-clés : Pool boiling Heat transfer enhancement Microchannels Grooves Bubble dynamics Index. décimale : 536 Chaleur. Thermodynamique Résumé : Pool boiling is of interest in high heat flux applications because of its potential for removing large amount of heat resulting from the latent heat of evaporation and little pressure drop penalty for circulating coolant through the system. However, the heat transfer performance of pool boiling systems is not adequate to match the cooling ability provided by enhanced microchannels operating under single-phase conditions. The objective of this work is to evaluate the pool boiling performance of structured surface features etched on a silicon chip. The performance is normalized with respect to a plain chip. This investigation also focuses on the bubble dynamics on plain and structured microchannel surfaces under various heat fluxes in an effort to understand the underlying heat transfer mechanism. It was determined that surface modifications to silicon chips can improve the heat transfer coefficient by a factor up to 3.4 times the performance of a plain chip. Surfaces with microchannels have shown to be efficient for boiling heat transfer by allowing liquid to flow through the open channels and wet the heat transfer surface while vapor is generated. This work is expected to lead to improved enhancement features for extending the pool boiling option to meet the high heat flux removal demands in electronic cooling applications.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] A scale analysis based theoretical force balance model for critical heat flux (CHF) during saturated flow boiling in microchannels and minichannels / Satish G. Kandlikar in Journal of heat transfer, Vol. 132 N° 8 (Août 2010)
[article]
in Journal of heat transfer > Vol. 132 N° 8 (Août 2010) . - pp. [081501-1/13]
Titre : A scale analysis based theoretical force balance model for critical heat flux (CHF) during saturated flow boiling in microchannels and minichannels Type de document : texte imprimé Auteurs : Satish G. Kandlikar, Auteur Article en page(s) : pp. [081501-1/13] Note générale : Physique Langues : Anglais (eng) Mots-clés : Microchannels Minichannels CHF Critical heat flux Flow boiling Evaporation momentum Boiling Index. décimale : 536 Chaleur. Thermodynamique Résumé : Accurate prediction of critical heat flux (CHF) in microchannels and minichannels is of great interest in estimating the safe operational limits of cooling systems employing flow boiling. Scale analysis is applied to identify the relevant forces leading to the CHF condition. Using these forces, a local parameter model is developed to predict the flow boiling CHF. The theoretical model is an extension of an earlier pool boiling CHF model and incorporates force balance among the evaporation momentum, surface tension, inertia, and viscous forces. Weber number, capillary number, and a new nondimensional group introduced earlier by Kandlikar (2004, “Heat Transfer Mechanisms During Flow Boiling in Microchannels,” ASME J. Heat Transfer, 126, pp. 8–16), K2, representing the ratio of evaporation momentum to surface tension forces, emerged as main groups in quantifying the narrow channel effects on CHF. The constants in the model were calculated from the available experimental data. The mean error with ten data sets is 19.7% with 76% data falling within ±30% error band and 93% within ±50% error band. The length to diameter ratio emerged as a parameter indicating a stepwise regime change. The success of the model indicates that flow boiling CHF can be modeled as a local phenomenon and the scale analysis is able to reveal important information regarding fundamental mechanisms leading to the CHF condition.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] [article] A scale analysis based theoretical force balance model for critical heat flux (CHF) during saturated flow boiling in microchannels and minichannels [texte imprimé] / Satish G. Kandlikar, Auteur . - pp. [081501-1/13].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 132 N° 8 (Août 2010) . - pp. [081501-1/13]
Mots-clés : Microchannels Minichannels CHF Critical heat flux Flow boiling Evaporation momentum Boiling Index. décimale : 536 Chaleur. Thermodynamique Résumé : Accurate prediction of critical heat flux (CHF) in microchannels and minichannels is of great interest in estimating the safe operational limits of cooling systems employing flow boiling. Scale analysis is applied to identify the relevant forces leading to the CHF condition. Using these forces, a local parameter model is developed to predict the flow boiling CHF. The theoretical model is an extension of an earlier pool boiling CHF model and incorporates force balance among the evaporation momentum, surface tension, inertia, and viscous forces. Weber number, capillary number, and a new nondimensional group introduced earlier by Kandlikar (2004, “Heat Transfer Mechanisms During Flow Boiling in Microchannels,” ASME J. Heat Transfer, 126, pp. 8–16), K2, representing the ratio of evaporation momentum to surface tension forces, emerged as main groups in quantifying the narrow channel effects on CHF. The constants in the model were calculated from the available experimental data. The mean error with ten data sets is 19.7% with 76% data falling within ±30% error band and 93% within ±50% error band. The length to diameter ratio emerged as a parameter indicating a stepwise regime change. The success of the model indicates that flow boiling CHF can be modeled as a local phenomenon and the scale analysis is able to reveal important information regarding fundamental mechanisms leading to the CHF condition.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.aip.org/vsearch/servlet/VerityServlet?KEY=JHTRAO&ONLINE=YES&smode= [...] A theoretical model for axial heat conduction effects during single-phase flow in microchannels / Ting-Yu Lin in Journal of heat transfer, Vol. 134 N° 2 (Fevrier 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 2 (Fevrier 2012) . - 06 p.
Titre : A theoretical model for axial heat conduction effects during single-phase flow in microchannels Type de document : texte imprimé Auteurs : Ting-Yu Lin, Auteur ; Satish G. Kandlikar, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : Heat transfer Langues : Anglais (eng) Mots-clés : Boundary layers Heat conduction Laminar flow Microchannel flow Index. décimale : 536 Chaleur. Thermodynamique Résumé : A model is developed to analyze the effect of axial conduction on heat transfer during single-phase flow in microchannels. The axial heat conduction in the wall introduces heat flow toward the inlet section resulting in an increase in the local fluid temperature and a corresponding increase in the wall temperature. Neglecting this effect while reducing the experimental data results in a lower value of the experimental Nusselt number. The model derived in this work takes into account this effect and offers a parameter to estimate the effect introduced by the axial heat conduction effect in the wall. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000002 [...] [article] A theoretical model for axial heat conduction effects during single-phase flow in microchannels [texte imprimé] / Ting-Yu Lin, Auteur ; Satish G. Kandlikar, Auteur . - 2012 . - 06 p.
Heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 2 (Fevrier 2012) . - 06 p.
Mots-clés : Boundary layers Heat conduction Laminar flow Microchannel flow Index. décimale : 536 Chaleur. Thermodynamique Résumé : A model is developed to analyze the effect of axial conduction on heat transfer during single-phase flow in microchannels. The axial heat conduction in the wall introduces heat flow toward the inlet section resulting in an increase in the local fluid temperature and a corresponding increase in the wall temperature. Neglecting this effect while reducing the experimental data results in a lower value of the experimental Nusselt number. The model derived in this work takes into account this effect and offers a parameter to estimate the effect introduced by the axial heat conduction effect in the wall. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000002 [...]